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ABSTRACT

This tutorial reviews the mathematical foundations of single-antenna radio polarimetry with the
aim of fostering a conceptual understanding of the relationships between a physical description of
signal propagation (gain, delay, reflection, down-conversion, etc.), the corresponding transformations
of the electric field vector, and the equivalent operations on the Stokes parameters. The adopted
framework is based on the work of Britton (2000) and Hamaker (2000) and applied to analyze the
signal path described by Hamaker et al. (1996) with additional corrections for phase convention and
reflection. Some objective criteria for selecting a model of the instrumental response are introduced
and discussed, along with some practical guidelines that facilitate polarimetric calibration. Further
relevant background material and lengthier mathematical proofs are included in the appendix, which
introduces the vector, matrix, and tensor notation and concepts of linear algebra used in this work.
The appendix also reviews some of the basics of analog and digital signal processing that are relevant
to radio astronomy, and discusses some numerical instabilities that arise when modeling observations.
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1. INTRODUCTION

The polarization of electromagnetic radiation reveals
otherwise unattainable details about a wide variety of
astrophysical phenomena, from high-energy cosmic ray
air showers (Aab et al. 2014; Schellart et al. 2014) to
solar coronal mass ejections (Kansabanik et al. 2024)
and the relativistic precession of neutron stars (Desvi-
gnes et al. 2019). On larger scales, radio polarization has
been used to study the plasma in the vicinity of a super-
massive black hole (Event Horizon Telescope Collabora-
tion et al. 2021), and the energy density of gravitational
waves generated during inflation (Polnarev 1985; Planck
Collaboration et al. 2020).

As a signal from an astrophysical source propagates
to its point of reception, its state of polarization is al-
tered, which can be used to study the physical proper-
ties of the media through which the signal has traveled.
For example, observations of the polarized emission from
radio pulsars are used to study the Earth’s ionosphere
(Porayko et al. 2023) and map the large-scale structure
of the Galactic magnetic field (Beck et al. 1996; Han
et al. 2018). By revealing the strength and orientation
of magnetic fields, polarization observations are funda-
mental to understanding their role in star formation,
galaxy evolution, and high-energy phenomena.

Measuring polarization requires purpose-built instru-
mentation known as a polarimeter, and the experimental
activities related to measuring polarization are known
as polarimetry. A polarimeter typically distorts the po-
larization state of the signal in a manner that is unin-
tended and cannot be deduced from theory. This un-
known component of the instrumental response to an
electromagnetic signal must be determined experimen-
tally and calibrated before the polarization intrinsic to
the astrophysical source can be interpreted.

Methods of polarimetric calibration are based on a
mathematical model that describes the propagation of a
polarized signal along the path between the source and
the point of detection. Accordingly, the primary aim of
this paper is to foster a conceptual understanding of the
mathematical foundations of polarimetry. The insights
gained through this approach facilitate the development
of practical guidelines for use when designing an exper-
iment or analyzing observations.

This review focuses on polarimetric observations of
point sources made using a single antenna, such as a sin-
gle dish or a phased array formed by the phase-coherent
addition of signals from multiple elements of an interfer-
ometric array. For a comprehensive introduction to both
the theory and practice of radio polarimetry using inter-
ferometric arrays, including rigorous treatment of arbi-
trary brightness distributions and direction-dependent
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effects, the pioneering series by Smirnov (2011a,b,c,d)
and the lessons learned by Lenc et al. (2017) are highly
recommended reading. The formalism employed by
Smirnov and the framework presented in this tutorial
are both heavily influenced by Hamaker (2000).

Before embarking on this approach, Section 2 of this
paper reviews the geometric description of polarization
introduced by Stokes (1852), beginning with an ideal,
monochromatic source of electromagnetic radiation. In
Section 3, the Stokes parameters are related to the
second-order statistics of the electric field as represented
by the coherency matrix. This connection is further
explored in Section 4, where linear transformations of
the electric field are related to Euclidean rotations and
Lorentz boosts of the Stokes parameters. In Section 5,
these transformations are applied to a decomposition of
the signal path that extends the Hamaker et al. (1996)
model to include the effects of reflection and down-
conversion. Inverting such transformations to recover
the original polarization state is discussed in Section 6,
which includes a first-order calibration solution based on
the ideal feed assumptions. Section 7 introduces some
criteria for selecting a more complete model of the in-
strumental response, and Section 8 concludes with some
pointers to further reading.

Throughout this article, mathematical expressions are
greatly simplified by using complex-valued tensors, such
as vectors and matrices, and the various operations that
are performed on them. These are described in the ap-
pendix with an introduction to the fundamentals of mul-
tivariate linear algebra. The appendix also reviews the
basics of signal processing, such as the analytic signal
and down-conversion. It concludes with some discus-
sion of numerical stability when modeling polarization
observations.

2. MONOCHROMATIC LIGHT

At radio frequencies, it is both possible to directly
sample the electric field, and sufficient to employ a clas-
sical description of electromagnetic radiation (Maxwell
1865; Born & Wolf 1980). At higher frequencies in the
electromagnetic spectrum, polarimeters incorporate de-
vices that count photons, such as charge-coupled devices
and photomultiplier tubes. For a comprehensive intro-
duction to the quantum mechanical treatment of the
polarization of light, please see the excellent review by
Goldberg et al. (2021).

In both classical and quantum approaches to the topic,
it is useful to develop some intuition for the geometry
of polarization by starting with the nonphysical, ideal-
ized case of a purely monochromatic, plane-propagating,
transverse electromagnetic wave. For such a wave, there

exist two linearly-independent solutions to Maxwell’s
equations, representing two oppositely polarized waves.
Therefore, to fully describe the vector state of any ob-
served signal, radio receiver systems are designed with
a pair of receptors that are ideally sensitive to orthog-
onal senses of polarization. Typically, the receptors are
either circularly polarized (e.g., left and right circularly
polarized) or linearly polarized (e.g., horizontally and
vertically polarized).

The following discussion is based on a Cartesian
coordinate system in which the electromagnetic wave
propagates in the positive z direction and the electric
field is completely described by two orthogonal linearly-
polarized components in the z-y plane, which is perpen-
dicular to the direction of wave propagation,

e(t) < € (t) ) _ < ag cos(2mvt + ¢y) ) Y
ey(t) ay cos(2mvt + ¢y)

Here, €, and €, are the real-valued projections of € onto
the x and y axes. In the special case of monochromatic
light, v is the constant frequency of the wave, a, and
ay are the constant amplitudes of the orthogonal wave
components, and ¢, and ¢, are the phases of these com-
ponents at t = 0.

On each cycle of the wave, the electric field vector
traces an ellipse in the x—y plane, as shown in Figure 1.
This figure depicts two angles that describe the geome-
try of this ellipse: the position angle 1 and the ellipticity
angle x. Stokes (1852) first demonstrated the utility of
expressing the components of the electric field vector
in terms of these angles, starting with an intermediate
reference frame that is rotated about the z-axis by the
position angle 1, such that

2’ =z cosy + ysiny (2)
y' = —xsiny + y cosp. (3)

In this reference frame, which is depicted with dashed
lines and open arrow heads in Figure 1, the electric field
is expressed as in equation (2) of Stokes (1852)

() = (e%(t)) _ (7“c.osxsin(27n/t—|—(l)))7 (@)
€, (t) rsin y cos(2mvt + @)
where 7 defines the size of the ellipse and ¢ defines the
position of the electric field vector at ¢t = 0.

When y =0, e; = 0 and the electric field vector oscil-
lates along a line defined by the x’ axis, which is oriented
with respect to the x axis by ¥». When x > 0, the electric
field travels in a clockwise direction about the ellipse, as

seen by an observer looking toward the source, which
is defined as a left-hand polarized wave (IEEE 1983).
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Figure 1. A left-handed ellipse is traced by the electric field
vector on each cycle of a monochromatic wave travelling in
the positive z direction, as observed when looking toward the
source. The position angle, —7/2 < ¢b < 7/2, describes the
orientation of the semi-major axis of the ellipse with respect
to the z axis; it is positive when the 2’ and vy’ axes are rotated
in a counter-clockwise direction with respect to the z and y
axes. The tangent of the ellipticity angle, —7w/4 < x < 7/4,
is equal to the ratio between the semi-minor axis and the
semi-major axis; it is positive for a left-hand polarized wave
and negative for a right-hand polarized wave. The size of
the ellipse is defined by r, which is equal to the length of the
hypotenuse of the right triangle that contains .

When x < 0, the counter-clockwise traverse of the elec-
tric field vector is defined as right-hand polarization. In
the special cases of x = /4, the amplitudes of €/, and
e; are equal and the electric field traces a circle in the z—
y plane. In general, polarization state depends on both
the amplitudes of the electric field components and the
relative phase between them.

To move beyond the nonphysical case of perfectly
monochromatic waves, for which amplitude and phase
are constant as a function of time, it is necessary to
characterize random fluctuations of both amplitude and
phase using statistical averages. This is facilitated by
adopting the complex-valued analytic representation of
a signal, which directly encodes its instantaneous am-
plitude and phase (see Appendix A.1). After replacing
the real-valued €,(t) and €,(t) with their associated an-
alytic signals, e, (t) and e, (t), the monochromatic wave
described by Equations (1) through (4) is given by the
real part of its analytic representation,

e(t) = ( e (t) ) — egexp(il2mvt + ¢ — 1/2]).  (5)

Here, the polarization state of the wave is completely
described by the complex-valued two-dimensional Jones

vector (Eqn. D20),

o= C?swcosx—?sinz/)s%nx . (©6)
sin 1 cos x + ¢ cos sin x

An interactive notebook! demonstrates the relation be-
tween €(t) and e(t) by depicting the ellipses inscribed
by these functions as r, ¥ and x are varied.

3. PARTIAL POLARIZATION

No physical signal is ever strictly monochromatic,
and astrophysical signals are typically an incoherent su-
perposition of waves from a large number of emitting
sources. The polarization of such signals cannot be de-
scribed as in the previous section. Furthermore, over
most of the spectrum, the electric field fluctuates too
rapidly to be directly sampled, and it is generally not
possible to determine the geometry of the polarization
ellipse directly from measurements of the electric field
vector. Instead, the polarization state must be inferred
by other means.

For example, the position angles of X-ray photons are
determined from the trajectories of ejected photoelec-
trons. The polarization of optical light is typically esti-
mated by measuring pairs of intensities after the radi-
ation is decomposed into oppositely polarized streams.
(See Appendix E for more detail.) At radio frequencies,
the electric field is directly sampled; however, the astro-
physical signal of interest is typically buried in noise and
it is necessary to integrate over time and frequency to
increase the signal-to-noise ratio. Such integration can
be performed only after squaring the electric field, after
which the information about the instantaneous phase of
the signal is lost.

3.1. Stokes Parameters

Although polarization state is not measured directly
from the electric field, its interpretation remains founded
on the geometry of the polarization ellipse owing to the
analysis by Stokes (1852). By considering the conditions
under which two independent sources of radiation could
be considered equivalent, Stokes (1852) arrived at four
measurable quantities that completely describe the state
of polarization. Following refinements by Perrin (1942),
the four Stokes parameters are given by

So=1

S1 = Ipcos 2y cos 2y
So = Ipcos 2y sin 2¢
Ss = Ipsin2y

I https://github.com/straten/epsic/tree/master/notebooks
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Figure 2. The spherical coordinates of the polarization
vector, 8 = (S1,52,53)7 = (Q,U, V)7, include the vector
length |S| = Ip, longitude 21, and latitude 2x. Points in
the S1—S plane (S3 = 0) represent linearly polarized states,
points above this plane (S3 > 0) represent left-hand ellip-
tically polarized states and the positive S3 pole represents
left-hand circular polarization.

where [ is the intensity of the light, p is the degree of
polarization (see Section 3.2), and x and v are the ellip-
ticity and orientation angles that define the polarization
ellipse.

The four-dimensional vector of Stokes parameters,

So I
s=| =9 (8)
- 52 U

S \%

is separable into scalar and vector components, [Sy, S],

where S = (51, 52,53)T is the polarization vector with
length |S| = Ip and direction defined by 2t and 2y, as
depicted in Figure 2. Measurement of S yields the ori-
entation and ellipticity angles that define the geometry
of the polarization ellipse,

1 _1 59

’(/J—itan Sil (9)
_ L. 15

X—§bln G (10)

3.2. Degree of Polarization

The degree of polarization

_ 18l

P=-s (11)

is a measure of the fraction of the total intensity that
is polarized. When p = 0, the light is unpolarized, also
defined as common light (Stokes 1852); when p = 1, the

light is 100% polarized, or purely polarized; for partial
polarization, 0 < p < 1.

As shown by Equation (C17) and the discussion that
follows it, unpolarized or partially polarized radiation
is equivalent to an incoherent superposition of two or-
thogonal purely polarized states. An unpolarized state
can be decomposed into any pair of orthogonal purely
polarized states of equal amplitude (Stokes 1852). In
contrast, a 100% polarized wave can be described using
a single Jones vector, e, such that

e(t) = epz(t), (12)

where z(t) is a complex-valued function that describes
stochastic fluctuations of amplitude and phase. It has a
mean of zero and variance of unity; that is, (|z(¢)|?) = 1,
where angular brackets denote an average over time. Re-
ferring to Equations (5) and (6), monochromatic light
is a special case of Equation (12) in which z(¢) is a
pure tone with constant frequency; therefore, strictly
monochromatic light is 100% polarized.

3.3. Poincaré Sphere

When only the polarization state is of interest, the
polarization vector can be normalized by the total in-
tensity, yielding S = S/Sp, such that |§\ = p. When
S is plotted as in Figure 2, every possible polarization
state corresponds to a point on or inside a sphere of
unity-radius known as the Poincaré sphere. In this geo-
metric representation, purely polarized states lie on the
surface of the sphere, and the unpolarized state is at its
center (the origin). Partially polarized states are repre-
sented by points within the sphere, and their distance
from the center is directly proportional to their degree
of polarization.

3.4. Polarization Ellipse

In this section, the relationship between the mea-
surable Stokes parameters and the inferred geometry
of the polarization ellipse described by Equation (7)
is explored using the special case of purely polarized
monochromatic light described by Equation (1). The
connection between the relative phases? and amplitudes
of the components of the electric field vector, the ge-
ometry of the ellipse traced by that vector, and the
corresponding Stokes parameters are demonstrated us-
ing six special cases of purely polarized radiation: Stokes
+ Q, £ U, and + V. These cases are depicted in Figure 3.

2 The Stokes parameters are independent of the absolute phase,
¢, that appears in Equation (4). That is, the measured polar-
ization state does not depend on the choice of time origin.
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Stokes +Q: If a, = 0 in Equation (1), then the ra-
diation is 100% linearly polarized with the electric field
vector oscillating along the x axis. In this case, x = 0,
¥ = 0, Stokes Q@ = S; = Sy is positive, and Stokes
So =853 =0.

If a, = 0, then the radiation is 100% linearly polarized
with electric field vector oscillating along the y axis. In
this case, x = 0, ¥ = £7/2, Stokes @ = S; = —95) is
negative, and Stokes Sy = S3 = 0.

Stokes +U: If a, = a, and the relative phase differ-
ence, Ap = ¢, — ¢y, = 0, then €,(t) = €,(t) and the ra-
diation is 100% linearly polarized with the electric field
vector oscillating along the line defined by y = z (i.e.,
offset by 45° with respect to the z axis). In this case,
x =0, ¥ = /4, Stokes U = Sy = Sy is positive, and
Stokes S; = 53 = 0.

If a, = ay, and A¢ = =£m, then €, (t) = —e,(t) and
the radiation is 100% linearly polarized with the electric
field vector oscillating along the line defined by y = —z
(i.e., offset by —45° with respect to the z axis). In
this case, x = 0, ¢» = —7/4, Stokes U = Sy = =S is
negative, and Stokes S; = S3 = 0.

Stokes £V: If a, = a, and A¢ = —n/2, then the
phase of €, leads that of €, by 90° and the radiation is
100% circularly polarized with the electric field vector
tracing a clockwise circle in the x—y plane, as seen by
an observer looking toward the source; this is defined
as a left-hand circularly polarized (LCP) wave. In this
case, Y = m/4, 1 is undefined, Stokes V = S3 = Sy is
positive, and Stokes S; = S = 0.

If a; = a, and A¢ = 7/2, then the phase of €, leads
that of €, by 90° and the radiation is 100% circularly
polarized with the electric field vector tracing a counter-
clockwise circle in the x—y plane, as seen by an observer
looking toward the source; this is defined as a right-
hand circularly polarized (RCP) wave. In this case, y =
—m /4, 1 is undefined, Stokes V = S3 = —5; is negative,
and Stokes S; = S5 = 0.

3.5. Adopted Standard

Apart from the refinements described in Appendix F,
the conventions and definitions adopted in this article
are consistent with both Stokes (1852) and the Institute
of Electrical and Electronics Engineers (IEEE 1983). In
the IEEE standard, the right-hand rule is applied with
the thumb pointing in the direction of wave propagation;
it defines both the angle measured from a reference axis
to the major axis of the polarization ellipse, and the
direction in which the electric field rotates for right-hand
elliptically polarized states.

Y +U Y -U
T T

Y +V Y -V
T T

Figure 3. The polarization ellipses inscribed by the electric
field vector for the six special cases of monochromatic light
described in Section 3.4.

The IEEE standard also defines the Poincaré sphere
such that left-hand elliptically polarized states occupy
the upper hemisphere, where Stokes V is positive in a
right-handed basis defined by Stokes Q, U and V. As
more fully discussed in Hamaker & Bregman (1996) and
van Straten et al. (2010), the International Astronomi-
cal Union (TAU 1974) defines Stokes V' = —S3, which is
negative for left-handed circular polarization and oppo-
site to the convention adopted in this article.

3.6. Coherency Matrix

The polarization state of electromagnetic radiation
can also be described by the second-order statistics of
e(t), as represented by the complex-valued 2 x 2 co-
herency matrix (Born & Wolf 1980)

p=le(t) @ el(t) = <<€°63> <eoe’f>>. (13)

(erep) (ereq

Here, the angular brackets denote an average over time,
® is the tensor product (Eqn. B11), and e (#) is the Her-
mitian transpose of e(t) (Eqn. B3). For brevity, explicit
dependence on time has been dropped in the rightmost
expression. Note that each component of e(t) is mul-
tiplied by the complex conjugate of either itself or the
other component, a process known as square law detec-
tion. Consequently, as for the Stokes parameters, the
components of the coherency matrix are independent of
the absolute phase of e(t).
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The coherency matrix is self-adjoint, or Hermitian
(i.e., p = p'), and can be written as a linear combina-
tion of four Hermitian basis matrices (e.g., Fano 1957),

3
1
=3 > Suou, (14)
n=0

where S, are the four real-valued Stokes parameters and
the basis matrices consist of the 2 x 2 identity matrix
and the Pauli matrices,

10 1 0
0’0: 0'1:

o) =)
N (R A (N
> \1 o =\ o)

For brevity in the remainder of this paper, the sum-
mation symbol is omitted from equations and Einstein
notation is used to imply a sum over repeated indeces.
(See Appendix B for more detail.)

Conversely, the Stokes parameters can be represented
as projections of the coherency matrix onto the basis
matrices using the tensor double contraction (Eqn. B13),

(15)

Sy=0,:p. (16)
Proof 3.1.
1
oLip= 55” OL:0 Eqn. (14)
= SO Eqn. (C4)
=3,

Substitution of Equation (13) into Equation (16) leads
to the following expressions for the Stokes parameters.
So=<|eo( )|2> +(Jex(t)?) 17

<|61 t)|) 18
19

(
(
(
(20

—_— - D —

Example: Consider p = 3,

Eqn. (16)
=0o3:(e®el) Eqn. (13)

0 —i (eoep) (eoel)
=Tr Ean. (B
K o) <<e1ez;> <elet>>1 e {B5)

= —i(ere) + ilepey)
= 2Im[(ef e1)].

Sy =o03:p

3.7. Invariant Interval

As for the Lorentz four-vector in special relativity, the
square of the invariant interval of the Stokes parameters
is defined by (Barakat 1963; Britton 2000)

SI* =53 — IS[*. (21)

This interval remains invariant (up to scalar multiples)
under linear transformations of the electric field; there-
fore, | S| is linearly proportional to the scalar amplifi-
cation of the source. This property proves useful dur-
ing numerical analysis and modeling; for example, the
invariant can be used to normalize the Stokes parame-
ters and accurately compensate for random scintillation-
induced fluctuations of the flux density of the source (as
in van Straten 2004). In high-precision pulsar timing
experiments, use of the invariant interval yields arrival
time estimates with significantly reduced instrumental
artifacts (e.g., van Straten et al. 2001).

Through its linear relation to the determinant of the
coherency matrix via Equation (C6),

ol = [Suo,./2l = (S5~ 81" /4= ISP/4,  (22)

the invariant also helps to define the concept of a
valid polarization state. As a direct consequence of the
Cauchy-Schwarz inequality for random variables, a valid
polarization state must satisfy

p| >0 and |S|>0. (23)

Proof 3.2. The Cauchy-Schwarz inequality,
[{eoet)* < (leol*){lex]*),
and Equation (13) yield

ol = (leol*)(le]?) — [{eoet)[* > 0

Any polarization state that fails to satisfy Equa-
tion (23) may be called invalid, nonphysical, and/or
over-polarized. Although nonphysical, over-polarized
states can arise during numerical analysis. For exam-
ple, they can be produced through transformation by
an impure Mueller matrix (e.g. Section 7.4). They can
also arise when all four Stokes parameters are allowed
to vary independently during modeling.

For fully polarized light, Sy = |S| and |S| = |p| = 0.
The invariant interval and determinant are also zero for
the instantaneous Stokes parameters,

5,=0,:p where p=exel, (24)
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because p is computed from a single instance of the
electric field and is therefore singular; i.e.,

D] = le ® ef| = epef erel — epel erely = 0. (25)

3.8. Orthogonal Polarizations

Stokes (1852) defined oppositely polarized waves by
considering the decomposition of a partially polarized
signal into two purely polarized components,

ea(t) = eqzq(t) and ep(t) = epzp(t), (26)

where e, and e, are constant Jones vectors that rep-
resent the polarizations of the two components, and
zi(t) = ej -e(t) (i € {a,b}) are the projections of e(t)
onto these vectors (Eqns. [B3] and [B4]). He then con-
sidered the superposition of the two components after
applying a relative delay 7 between them,

e'(t) =ea(t) + ep(t —7), (27)

and defined e4 and ep as oppositely polarized if and
only if the total intensity of €’(¢) is independent of 7.
The total intensity is given by (see Eqn. 17),

I=(e'(t)-e(t) = {fea) + lex(®)*);  (28)

therefore, the total intensity of the superposition

I'=(lea(t) + ep(t — )] - [ea(t) + ep(t — 7))
= el edllza(t)?) + € en(|zm(t — 7))
+2Re [e]f - ey (za ()2 (t — 7))].
(29)

Assuming that the signal is stationary, at least in the
weak sense, (|zp(t —7)|%) = (|2p(t)|?); therefore, I" is in-
dependent of 7, and the two components are orthogonal,
if and only if e - e, = 0.

To characterize the Stokes parameters of orthogonally
polarized states, consider the singular coherency matri-
ces of the two purely polarized states,

p.=e,®el and p, Eeb®ez,
and their tensor double contraction,

Pa: by = le] - e’ (30)

Proof 3.3.

Bo: Py =Tt (B, ) Eqn. (B15)
=Tr [eael ebeﬂ Eqn. (B12)
=Tr [e};ebel ea] Eqn. (B15)
= Tr [(eles)(eles)"]
= |el ey |? Tr[z] = 2

Therefore, the coherency matrices of two purely polar-
ized sources are orthogonal with respect to the trace
inner product (Eqn. B15) when the polarizations are or-
thogonal. Given the associated Stokes parameters,

Sau=0,:p, and 8, =0,:py,

the tensor double contraction,

Po Py = 7 (34,080 + 3, - 3p) - (31)

N |

Proof 3.4.

Po: Py = (Sa,u0u/2): (5o 0,/2)
1
= Z§a7# Shy Oyt 0y
1

= iga”u gb,l/ 5/,LV

1

= 55a,u 5b,p

2

Eqn. (C4)

7

Equating the right-hand sides of Equations (30)
and (31), noting that 5o = ||, and rearranging yields

5,8, =2lel - er]” —[3,|3,]. (32)
The angle between 5, and s, is given by

5,8, 2lel-el?

—a

cos®@ = 2 —2 = 9
ERIES EMIEN

L (33)

If e - e, = 0, then cos® = —1 and the angle between
5, and §; is 180°. That is, the polarization vectors of
orthogonally polarized signals are anti-parallel.

This result is consistent with Stokes (1852), where it
is demonstrated that oppositely polarized waves trace
ellipses with orthogonal major axes (|1p4 — ¥p| = 7/2)
and equal and opposite handedness (x4 = —xp). That
is, on the Poincaré sphere, oppositely polarized waves
occupy antipodal points.
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4. LINEAR TRANSFORMATIONS

Polarimetric studies require modeling and correcting
the manner in which the measurement apparatus alter
the incident radiation. In radio astronomy, the instru-
ment includes everything from the antenna (including
any reflectors involved in focusing and redirecting the
radio waves) to the signal processing system used to
compute the Stokes parameters. It is also necessary to
model and correct Faraday rotation, which occurs in the
Earth’s ionosphere and the interstellar medium. In this
section, the response of a system is described using linear
transformations of the electric field and the equivalent
linear transformations of the Stokes parameters.

4.1. Jones Matrices

In the narrow-band (or quasi-monochromatic) approx-
imation of an electromagnetic wave (see Appendix A.2),
the response of a single receptor is defined by a complex-
valued row vector, r = (rg,71), such that the voltage in-
duced in the receptor by the incident electric field e(t)
is given by the scalar product, v(t) = r - e(t). The in-
tensity of the response, I = (v2(t)), is maximum when
the polarization of the incident wave matches that of the
receptor, and reduces to zero when the incident wave is
orthogonally polarized.

The response of a dual-receptor feed is represented by
a 2 x 2 complex-valued Jones matrix with rows equal to
the receptor vectors,

J— T0 _ Too To1 7 (34)
T1 10 T11

such that any linear transformation of the electric field
vector may be represented by

e'(t) = Je(t). (35)

The receptors in an ideal feed are orthogonal, such the
scalar product rq - TJ{ =0.

The response of a system that is composed of a series
of elements is represented as a product of Jones ma-
trices. Matrix multiplication is not commutative, and
in general the order in which operations are performed
must correctly reflect the order in which the elements
in the signal path are encountered. For example, con-
sider the system response described by equation (11) of
Hamaker et al. (1996),

e'(t)=Je(t)=GDCPFe(t). (36)

From the incident electric field e(t) on the right to the
observed €’(t) on the left, astrophysical signals are sub-
jected to

e Faraday rotation in both the interstellar medium
and the ionosphere, F;

e the projection between the celestial reference
frame and the receptor basis, P;

e the nominal antenna and feed configuration, C;
e deviations from an ideal feed, D; and

e complex receiver gains, G.

These transformations are depicted in Figure 4 and
defined and discussed in more detail in Section 5. Note
that Figure 4 includes an additional phase convention
correction @ that cannot be represented using a Jones
matrix and therefore does not appear in Equation (36).
The phase convention correction can be represented by
a Mueller matrix and is included in Equation (42) of
Section 4.3.

4.2. Congruence Transformations

Substitution of e’ = Je into Equation (13) yields the
coherency matrix of the transformed electric field, which
is described by a congruence transformation,

p =JpJt. (37)

Proof 4.1.
p = @) Eqn. (13)
= ((Je)® (Je)h) Eqn. (35)
= (Je ® elJ) (AB)" = BfAT
=J(e ® eIt J is constant
=JpJt Eqn. (13)

As discussed in more detail in Section 4.5, the congru-
ence transformation is a special case of the more general
radio interferometer measurement equation for a single
point source (Hamaker 2000; Smirnov 2011a). For a sin-
gle antenna, the coherency matrix is insensitive to the
absolute phase of J.

Proof 4.2. Consider J/ = Jei?.
p =JpJt
= (Je'?) p (Jei)'
=e%JpIle™ = JpIt

Eqn. (37)
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&2

Figure 4. The radio wave signal path, from free space propagation on the right to detection on the left. Also from right to
left are Faraday rotation F due to free electrons permeated by a magnetic field (represented by blue lines with arrows); the
coordinate projection P between the x and y axes of the receiver and the North and East basis vectors of the celestial reference
frame; the nominal configuration C of an ideal antenna and feed; unintended deviations D from that ideal; and the gains G
and phase convention @ of the down-conversion system and instrumentation used to detect the Stokes parameters.

Noting that (AB)? = BTAT, congruence transforma-
tion of the coherency matrix by the Jones matrix defined
in Equation (36) has the following “onion” form.

p =G (D(C(P(FpF)PI)CH DG  (38)

(The matrices in this equation are defined and discussed
in more detail in Section 5.)

Polarimetric calibration consists of transforming the
observed coherency matrix by the inverse of the system
response, p = J~'p/J~11, yielding the intrinsic polar-
ization,

p=---C! (D—l (G—lpg—lT) D—IT) c ... (39)

Because (AB)~! = B7!A~!, the onion is turned in-
side out and operations are inverted in reverse order,
beginning with the last element of the signal path in the
innermost congruence transformation.

A congruence transformation converts any valid po-
larization state to another valid state.

Proof 4.3. If |p| > 0 (Eqn. 23), then

10| =13 pJ7| Equ. (37)
= |3l 37| |AB| = |A[|B]
=JJ|pl J=1J|
>0 lp| >0 and 22" >0

No linear transformation of the electric field can alter
the degree of polarization of a purely polarized state.

Proof 4.4. If p is purely polarized, then
10| =13 pJ7| Equ. (37)
= |J/|pl|I7] |AB| = |A|B|
=0 lpl =0
Conversely, only a singular transformation (|J| = 0)

transforms partial polarization into pure polarization.

4.3. Mueller Matrices

Using Equations (14) and (16), a congruence transfor-
mation of the coherency matrix can be expressed as an
equivalent linear transformation of the associated Stokes
parameters by a real-valued 4 x 4 Mueller matrix M, as
defined by o

S;/L = M}S, (40)

where

1
M = 30 (JO'Z, JT). (41)

Proof 4.5.

S, is a scalar

I
|
q
=
g
q
AN
<
n
AN

Eqn. (41)

J

Although there is a unique Mueller matrix for every
Jones matrix, the converse is not true. This is most
directly understood by noting that a 4 x 4 real-valued
matrix has 16 degrees of freedom (dof), and a 2 x 2
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complex-valued matrix has only 8 dof. Mueller matrices
that do not have an equivalent Jones matrix are known
as “impure” or “depolarizing” (e.g., Hamaker et al. 1996;
Lu & Chipman 1996, and Appendix C.7). The definition
of a pure Mueller matrix is derived in Appendix C.6.
The signal path described by van Straten et al. (2010)
extends the Hamaker et al. (1996) model with an im-
pure correction for the complex phase convention, which
is described in more detail in Section 5.1. Therefore,
the van Straten et al. (2010) calibration model is best
summarized using the equivalent transformation of the
Stokes parameters by a Mueller matrix M,
é’zMéz@GDCPFS. (42)

From right to left, S is the column vector with elements
equal to the 4 Stokes parameters intrinsic to the astro-
nomical source; F through G are the Mueller matrices
derived from the Jones matrices defined in Equation (36)
and discussed in Section 5; @ is the phase convention
correction (see Section 5.1); and S’ is the column vector
of observed Stokes parameters.

4.4. Polarization Transfer Tensors

Linear transformations of polarization state can also
be represented as a double contraction (Eqn. B13) with
a two-dimensional, rank 4 polarization transfer tensor,
U, such that

P =U:p. (43)

Similar tensors are used in the generalized radio inter-
ferometer equation (Smirnov 2011d) and in descriptions
of the propagation of radiation through a magnetized
plasma (e.g., Kawabata 1964; Zheleznyakov 1968). The
tensor formalism also simplifies the analysis of the co-
variances between the Stokes parameters (van Straten
& Tiburzi 2017) and the definition of pure Mueller ma-
trices (Appendix C.6).

To relate a congruence transformation of the co-
herency matrix to the equivalent double contraction
with a polarization transfer tensor, the ® operator is
introduced to represent a tensor product followed by a
transpose over covariant® tensor indeces (Cardoso 1991).
That is, where A and B are matrices (rank 2 tensors)
and

{A @B}, = A/B] (44)
is their tensor product,

{A&B}, = AlB]. (45)

3 Covariant tensor indeces are raised in this work; note that van
Straten & Tiburzi (2017) incorrectly identified this as a trans-
pose over contravariant tensor indeces.

Upon double contraction with a matrix C, the rank
4 tensors defined by Equations (44) and (45) exhibit
the following transformation properties (Proofs B.1
and B.2).

(A©B):C=A (B:C) (46)
(A®B):C=ACB (47)
Using Equations (43) and (47), a congruence transfor-

mation by a Jones matrix J can be expressed as a double
contraction with

U=JJ" (48)
Proof 4.6
pPr=U:p Eqn. (43)
=J®JI:p Eqn. (48)
=JpJi Eqn. (47)

The polarization transfer tensor can also replace the
congruence transformation in Equation (41), thereby
yielding the equivalent Mueller matrix M,

, 1
M :Eau:u:ay. (49)

The inverse of this mapping is given by

1 v
u:§ Lo R T, (50)
Proof 4.7
1
5%u U0, Eqn. (49)
1 1
= 50" §M,{ 0.®0y):0, Eqn. (50)
Lo
= EMHO'M (o @00,
1
= EM';\ (op:0k)(or:0,) Eqn. (46)
= M23,n00x Eqn. (C4)
—

Equation (49) expresses the components of M as the
double projections of U onto the Hermitian basis matri-
ces. Equation (50) represents U as a linear combination
of the 16 basis tensors formed by tensor products of the
4 Hermitian basis matrices.
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4.5. Comparison with Radio Interferometry

As in Smirnov (2011a), the radio interferometer mea-
surement equation for a single point source models the
visibility matrices formed by the outer products of elec-
tric field vectors from pairs of elements in an array. That
is, if e4(t) and ep(t) are the signals from two array el-
ements, the visibility matrix for this pair

Vag = (ealt) ® el (t)). (51)

Furthermore, if J4 and Jp are the Jones matrices that
describe the reception of the incident electric field e(t)
by the two array elements, such that e4(t) = Je(t) and
ep(t) = Jpe(t), then the observed visibility matrix,

VAB:JAPJTB' (52)

In the context of interferometry, the coherency matrix p
is also known as the brightness matrix (Smirnov 2011a).
Equation (52) reduces to Equation (37) when observ-
ing a single point source with a single antenna. In the
tensor formalism of the generalized radio interferometer
measurement equation (Smirnov 2011d), Equation (52)
is expressed as

Vap =Uap:p, (53)
where Uy =J 4 ®J jg is the visibility transfer tensor*
(cf. Eqn. 48).

An extended source is described by a brightness ma-
trix that varies with direction, p(2), such that the visi-
bility matrix is given by the integral

Vap = / / IAB) () ILE e, (59)

where J4 p(2) are the direction-dependent responses
of each antenna. For a single-antenna observation of an
extended source,

p=[[ 30023 0. (55)

There are some key differences between single-antenna
and interferometric measurements of polarization. For a
single antenna, the coherency matrix is Hermitian and
independent of the absolute phase of e(t). For an in-
terferometer, the visibility matrix is not Hermitian and
depends on the relative phase between e (t) and ep(t).

4 A transpose of covariant tensor indeces also appears in equa-
tion (10) of Smirnov (2011d).

4.6. Polar Decomposition

Any invertible Jones matrix J can be decomposed into
a unique product known as its left polar decomposition,

J = JBR, (56)

where J = |J|'/2 and |J| is the determinant of J; B
is Hermitian (BT = B); R is unitary (R" = R™!); and
both B and R are unimodular (|B| = |R| = 1). The
requirement for a left polar decomposition® stems from
the definition of a Jones matrix as a pair of receptor row
vectors (Eqn. 34).

Polar decomposition into Hermitian and unitary ma-
trices provides a practical framework for classifying and
conceptualizing distinct polarization-altering effects, as
discussed in more detail in Section 4.7. Isolating the de-
terminant of the Jones matrix also has practical benefit.
In single-antenna polarimetry, the coherency matrix is
insensitive to the phase of J (Proof 4.2); therefore, with-
out any loss of generality, the absolute phase is set to
zero and J is replaced by the real-valued absolute gain,
G = |J|, thereby eliminating a degenerate dof.

The polar decomposition also enables unique determi-
nation of the Hermitian component of the instrumental
response given only an observation of a source that is
known to be completely unpolarized. To demonstrate
this, first note that the Hermitian component of any
Jones matrix J can be determined via the Gram matrix
of its rows, JJ*, such that®

B? =G72JJ". (57)

Proof 4.8. The Gram matrix of the rows of J,

JJ'=JBR(JBR)'
= JBRR'BJ*
=|J’BRR'B
:G2B2

For an unpolarized source p = Iog; therefore,

p =Jp3 =133 = IG*B. (58)

5 A right polar decomposition, J/ = J'R’B’, would be used
if receptors were column vectors, such that e’(t) = J'Te(t)
and p/ = J'TpJ’'. Note that J/ = JT = J* RIBT; therefore,
J'=J*, R =R and B’ = B.

6 If the Jones matrix is defined as a pair of columnn vectors,
then the Gram matrix of the columns of J’ would be used to
determine its Hermitian component.
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The unknown factor of T = IG? can be eliminated
by noting that |B| = 1; therefore, |p'| = T? and B =
(p'/T)'/2.

4.7. Axis-Angle Representation

As shown in Appendix C.4, B and R can be expressed
using axis-angle representation,

= ™9 — 5 coshf + riv - osinh 8 (59)
R (¢) = "% = g cos ¢ + in - asin ¢, (60)

o
£l
=

I

where m and n are three-dimensional unit vectors, /3
and ¢ are real-valued scalars, and o = (01,02,03) is a
3-vector whose components are the Pauli spin matrices.
Each axis-angle representation has 3 dof in the vector
that defines it. Combined with the 2 dof in the real and
imaginary parts of the complex-valued scalar J, Equa-
tion (56) has 8 dof, as expected for a 2 x 2 matrix with
independent real and imaginary parts.

The axes and angles in Equations (59) and (60) have
geometric interpretations in the four-dimensional space
of the Stokes parameters. After a congruence trans-
formation by a Hermitian matrix B, the associated
Stokes four-vector is transformed by a Lorentz boost
along the m axis by a hyperbolic angle —24 (e.g., Ap-
pendix D.1). A Lorentz transformation of the Stokes
four-vector mixes Sy with the polarization vector S,
thereby altering both the intensity and the degree of
polarization. Consequently, energy is not conserved.
Hermititan matrices are equivalent to the polconversion
defined by Hamaker (2000); they describe the diattenua-
tion of a system (Lu & Chipman 1996) due to differential
gain and non-orthogonality of the receptors.

In contrast, congruence transformation by a unitary
matrix rotates the Stokes polarization vector S about
the n axis by an angle —2¢, using the right-hand rule
for rotation (e.g., Appendix D.2). This rotation in three-
dimensional space leaves the total intensity and the de-
gree of polarization unchanged. Unitary matrices are
equivalent to the polrotation defined by Hamaker (2000);
they describe the retardance of a system (Lu & Chipman
1996) due to differential phase and they represent any
change of basis by projection onto a pair of orthonormal
receptors (see Proof C.1).

The axis-angle representations of B, (8) and Ra(¢)
exhibit a number of properties that prove useful during
analysis. Both transformations are unimodular.

Proof 4.9.

IByi(B)| = logcosh 8 +1in - gsinh B|  Eqn. (59)
= cosh? B — | |* sinh? B Eqn. (C6)
=1

Similarly, |Rx(¢)| = cos? ¢ — |ine)? sin? ¢ = 1

Therefore, congruence transformation by By, (8) or
R, (¢) preserves the determinant of the coherency ma-
trix and the invariant interval of the Stokes parameters.

\

Proof 4.10. Let [U| =1 and

0’| = |UpUT| Equ. (37)
= [U]|p|[U"| |AB| = |A|[B]|
= |p| Ul =|Ulf =1

J

Exponentiation of B,;,(8) or Rya(¢) is equivalent to
multiplying the angle by the power,

™
<
=
I
=)
=)
I
1
e
I
aQ
S
3
14
I
oy
3

m(yB8)  (61)
=Ralyp)  (62)

which simplifies the derivation of quantities such as the
inverse or the Hermitian square root. Further concep-
tual benefits of the axis-angle representation are dis-
cussed in more detail in Appendix C.5.

5. SIGNAL PATH

In this section, each of the elements in the signal path
depicted in Figure 4 are discussed in more detail, be-
ginning with the phase convention ® and ending with
Faraday rotation F. The receiver gains, G, and the de-
viations from an ideal feed, D, are analyzed using the
polar decomposition and expressed using the axis-angle
representation. Apart from ®, the remaining matrices
are purely unitary (rotation) matrices.

5.1.  Phase Convention

The phase convention of an instrument is defined by
the number of signal processing steps that result in com-
plex conjugation of the analytic signal, which cannot be
represented by a linear transformation of the electric
field vector, such as a Jones matrix.
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Proof 5.1. If f(z) = 2* and c and z are two
complex numbers,

flez) = (c2)* = c*2" # cf (2);

therefore, complex conjugation is not a linear
mapping, which must satisfy f(cz) = c¢f(z2).

Referring to Equations (18) through (20), complex
conjugation of the electric field vector negates the sign of
S3, a transformation represented by the impure Mueller
matrix ® that appears in Equation (42). Consequently,
the measured sign of S5 is impacted by the treatment of
the complex phase of the electric field, which depends
on the phase convention adopted during the design and
implementation of instrumentation and signal process-
ing software; the method used to down-convert the radio
signal; and the Nyquist zone that is digitally sampled.

As noted in Section 2 of van Straten et al. (2010),
many signal processing textbooks and software packages
adopt the convention that the argument of a complex-
valued wave increases linearly with time, such that
z(t) o exp(iwt). This convention is adopted in equa-
tion (1) of Stokes (1852) and in the analytic representa-
tion of a monochromatic wave presented in Equation (5).
It is opposite to the convention used in many physics
text books (e.g., Born & Wolf 1980), where the solution
for a plane-propagating monochromatic electromagnetic
wave is presented as e(z,t) = egexp(i[kz — wt]).

Choice of phase convention also arises in the imple-
mentation of the Discrete Fourier Transform (DFT). For
example, relative to Equation (A2), which is consistent
with the definition adopted by Bracewell (1965) and the
implementation of commonly used DFT libraries such
as FFTW (Frigo & Johnson 2005), equations (12.1.7)
and (12.1.9) of Numerical Recipes (Press et al. 1986)
define the DFT and its inverse using the opposite sign
for the argument of the complex exponential. Applica-
tion of a DFT that is based on an opposite sign conven-
tion is equivalent to negating the frequency, which for a
real-valued input signal results in complex conjugation.

The configuration of observatory instrumentation can
also negate phase. As shown in Appendix G, both
complex conjugation and negation of frequency occur
when either lower-sideband down-conversion is used; or,
during dual-sideband down-conversion, the quadrature
component is mixed with a local oscillator that leads
that of the in-phase component by 90°; or an even-
numbered Nyquist zone is sampled. Complex conjuga-
tion at any stage of analysis negates phase in all subse-
quent processing stages.

5.2. Receiver Gains

A radio receiver converts an electromagnetic wave
travelling in free space into two separate signals, each
representing an orthogonal component of the electric
field vector. These separate signals propagate along dis-
tinct transmission lines and are independently processed
using components such as amplifiers/attenuators, split-
ters/couplers, and analog-to-digital converters. Assum-
ing that there is no further cross-coupling between the
two signals, the receiver gains matrix

[ Gy 0
G—<O G1>’ (63)

describes the complex-valued gains, Gy, of all compo-

nents used to process the two separate signals.
Intuition might suggest that it would be fruitful to

represent the complex-valued gains in polar form,

G = g expidy,

and decompose G into separate amplitude and phase

terms,
i
G (% 0 ) [ 0 (64)
0 ¢1 0 e

However, when a promising next step is not obvious,
it pays to employ a systematic approach. The strategy
adopted in this work is based on the polar decompo-
sition (Eqn. 56), the axis-angle representations of the
boost and rotation components (Eqns. [59] and [60]),
and determination of the boost component via the Gram
matrix (Eqn. 57).

The polar decomposition, G = G B4Ry, includes the
absolute gain,

G = |G|Y? = (GoG1)?, (65)

a boost component B, and a rotation component R,.

As noted in Section 4.6, the absolute phase is chosen
such that G is real-valued. The following sub-sections
focus on the axis-angle representations of B, and Ry,
where it is shown that B, characterizes the ratio of the
gain amplitudes, or differential gain, and R, describes
the differential phase.

5.2.1. Differential Gain

Using Equation (57), the boost component of G can
be derived via the Gram matrix of its rows,

9 0
B:=G GGl =G| 7 , (66)
2
0 g7
where g, = |Gg| are the amplitudes of the complex

1/2

gains, such that G = (gog1)'/#. Taking the square root
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of both sides of Equation (66) yields

r o
Bg:<0 F_1>7 (67)

where T' = (go/g1)2 is the real-valued amplitude ratio
that describes the differential gain.

To arrive at the axis-angle representation of By, note
that its off-diagonal elements are zero and only o¢ and
o contribute to the diagonal elements of the sum in
Equation (59). Therefore, . = (1,0,0)” and

. e’ 0
B, =opcoshy+ oysinhy = . (68)
0 e

Equating the right hand sides of Equations (67)
and (68) yields

90

p (69)

1
'y:lnF:iln

Differential gain describes any transformation that
subjects opposite polarizations to different levels of am-
plification, also known as diattenuation. It can vary as a
function of both time and frequency for a variety of rea-
sons. For example, to keep the signal power within the
optimal regime of operation, some experiments will set
new attenuation levels at the start of each observation.
Some instruments employ active attenuators that intro-
duce differential gain fluctuations on short timescales.
Furthermore, the mismatched responses of the compo-
nents in the signal path typically lead to variation of 3
as a function of frequency.

5.2.2. Differential Phase

The axis-angle representation of R, is obtained by
rearranging the polar decomposition of G to arrive at
R, = G7'B,'G. Both G and B, (and their inverses)
are diagonal and, as a product of diagonal matrices, R,
is also diagonal. Only o and o contribute to the di-
agonal elements of the sum in Equation (60); therefore,
n = (1,0,0)7 and

L ( e 0 )
R, =o0pcos¢+ioising = ], (70)
0 e i

where ¢ describes the differential phase. Subtracting
the (degenerate) absolute phase ¢.ps = (¢o+¢1)/2 from

the phases in Equation (64) leaves ¢ = (¢o — ¢1)/2.
Differential phase describes any transformation that
subjects opposite polarizations to different delays; it is
also known as retardance in optics and cross-hand phase
or delay in interferometry. It arises when the opposite

polarizations propagate along signal paths of different
lengths and/or with different speeds. For a given delay
At between eg(t) and e;(t), the corresponding differen-
tial phase ¢ = v At varies linearly with radio frequency.
Nonlinear spectral variations arise from dispersive ef-
fects in the electronics of the receiver, down-conversion
system, cables, and other components used to connect
observatory instrumentation. Section 5.6 discusses the
differential phase that arises during propagation through
the magnetized plasma in the Earth’s ionosphere and the
interstellar medium.

5.3. Deviations from an Ideal Feed

In an ideal feed, the receptors have maximal response
to orthogonal senses of either linear or circular polar-
ization. However, in practice, the receptors are neither
perfectly orthogonal nor exactly linearly- or circularly-
polarized. Let non-ideal receptors be represented by
unit row vectors, 7o and 7 (f“ﬁ“;r = 1; note that the
gains of the receptors are modeled by Gy and G7 in
the previous section). Therefore, the deviations from an
ideal feed are given by

D — 7:°0 _ 7?00 7?01 . (71)
71 710 711

Deviations from ideal are also known as cross-talk,
leakage, or simply D-terms. The polar decomposition,
D = G4 B4Ry, includes a scalar gain G4, boost By, and
rotation Ry4. Rotation matrices describe only orthonor-
mal pairs of receptors (see Proof C.1); therefore, the
orthonormal component of D is given by Ry and any
non-orthogonality must be described by By, as detailed
in the following sections.

5.3.1. Non-orthogonal Component

Using Equation (57), the boost component of D can
be derived via the Gram matrix of its rows,

1 -7l
~ Jr 1 )a (72)

B} = G;’DD' = G? < )
1Ty 1

Let B2 = B (283) and note that the elements on the
diagonal of Equation (72) are equal to each other; there-
fore, there can be no contribution from o;. Only o5 and
o3 contribute to the off-diagonal elements of the sum in

Equation (59); i.e., m = (0,mz, m3)”, and

B (28) =0 cosh2f + (meos + msos) sinh 2/

_( cosh 23 z;sinh2ﬁ>

. (73)
Zm sinh 23 cosh 23

where 2, = ms + img. Equating the diagonal elements
of Equations (72) and (73) yields G% = sech 23; there-
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fore, after taking the determinant of both sides of Equa-
tion (57) (noting that B, (20) is unimodular) and rear-
ranging,

IDD| = G4 = sech 223 = 1 — tanh® 2. (74)
Similarly, the determinant of Equation (72) leads to
IDDf| =1 — | - #][% (75)

Equating the right-hand sides of Equations (74)
and (75) yields

1
8= itanh_1 ‘i’o . ﬂ .

(76)

When the receptors are orthogonal, /3 is zero and By
reduces to the identity matrix (no deviations from ideal).

As in Section 4.1 of van Straten (2004), the 2 dof in the
non-orthogonal component of D may be parameterized
by b = (0,bs,b3)T = riusinh 8, such that sinh® 3 = b- b,
cosh?’ 3=1+b-b, and

By =Bu(8) =0o(l+b-b)"*+0-b. (77)

To first order, this derivation is consistent with
Equation (19) of Britton (2000), which describes non-
orthogonal receptors using a product of two separate
boosts along the Ss and S3 axes (corresponding to
Stokes U and Stokes V, respectively, in a linear basis).
In general, the result of this product includes a rotation
about the S; (Stokes Q) axis; however, if either of these
two boosts is small, then this rotation is negligible. In
contrast, no small-value approximations are made in the
derivation of Equation (77).

The instrumental boost due to non-orthogonal recep-
tors can vary as a function of time and frequency. For
example, the parallactic rotation of the receiver during
the transit of the source changes the orientation of m
with respect to the celestial coordinate system. Further-
more, electronic cross-coupling between the two recep-
tors can vary with radio frequency.

5.3.2. Orthonormal Component

In principle, R4 can be obtained by rearranging the
polar decomposition of D to arrive at Ry = G;lBng;
however, this proves to be algebraically cumbersome.
Instead, following Britton (2000), the transformation is
expressed using the spherical coordinates i) and x that
define the polarization ellipse.

First, in the ideal basis, consider a 100% polarized
signal e(t) with Stokes polarization vector (see Eqn. 7)

S = I (cos2x cos 2, cos2xsin2y, sin 2x)T. (78)

Next, consider the transformation from the ideal basis
to one in which the first receptor responds maximally to
e(t) and the response in the orthogonal receptor is zero.
In this basis, the measured coherency matrix,

o = (I 0) —(oot+a0l/2  (79)
0 0
and the polarization vector 8’ = I(1,0,0)7.

With reference to Figure 2, 8’ is obtained by rotat-
ing S about the S3 axis by —21 in the ideal basis, then
rotating the result by 2x about the S} axis in the inter-
mediate basis. The corresponding transformation of the
electric field, e’(t) = Ry e(t), where

Rq = R3(—x)R3(¥). (80)

This is equivalent to equation (15) of Britton (2000),
apart from the negation of x that associates positive
values of x with S3 > 0.

This is a useful parameterization of the 2 dof in Ry
because it reduces to the identity matrix (no deviations
from ideal) when x and 1 are zero. Furthermore, be-
cause differential phase results in a rotation about the
S axis, it is desirable to describe the deviation from
the ideal basis transformation using rotations about the
other two axes. Together, the three rotations define the
orientation of the basis in a manner similar to the Tait—
Bryan angles (yaw, pitch, and roll).

5.4. Nominal Feed Configuration

As in van Straten et al. (2010), the nominal feed con-
figuration is described by three parameters that are sum-
marized in Table 1. The feed basis defines the polariza-
tions of the receptors (linear or circular); the feed hand
defines the handedness of the basis (left or right); and
the symmetry angle describes the orientation of the ref-
erence frame defined by the receptors. The correspond-
ing basis transformation

C = RyR,R:(O) (81)

is the product of feed hand R, and basis Ry transfor-

mations, and a rotation about the line of sight R;(O)
defined by the symmetry angle ©. These are detailed in
the following sections, starting with the feed basis, which
defines both the nominal symmetry angle and the effect
of the feed hand transformation.

5.4.1. Feed Basis

Typically, the two receptors in a receiver are either
linearly or circularly polarized, and Section 2 describes
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Table 1. The effects of phase convention and nominal feed configuration parameters in each basis.

Parameter Range Effect

Linear Circular
Phase Convention +1 +V + U
Feed Basis LIN or CIRC S =(Q,U, W) |S8=(V,Q,U)"
Feed Hand +1 + Q&V + U&V
Symmetry Angle —n/2<60<7w/2 Ry(0—n/4) R;(9)

a Cartesian coordinate system defined by linearly polar-
ized receptors. As shown in Appendix D.4, the trans-
formation from this Cartesian basis to one defined by a
pair of circularly-polarized receptors is described by

1 1 —i
N
In the basis defined by Ry, the Stokes polarization vec-
tor 8 = (S1,52,93)7 = (V,Q,U)T and the effects of all
subsequent transformations (from X to @) differ from
their impact in the original Cartesian basis.

For example, in the circular basis, the rotations
around the S5 and S3 axes that define both the polariza-
tion ellipse (Eqn. 4) and the orthonormal component of
deviation (Eqn. 80) are better described by pair of polar
angles, £ and (, respectively. These angles, depicted in
Figure 5, are related to the orientation and ellipticity
angles by

tan 2€ = cot 2 cos 21 (83)
sin 2¢ = cos 2 sin 2. (84)

In the circular basis, the differential phase ¢ describes
rotation about the Stokes V axis, which is equivalent to
a physical rotation about the line of sight (Proof 5.2).
Later sections describe the impacts of the circular basis
on the feed hand Ry, (Section 5.4.2), axis of symmetry
R;(0©) (Section 5.4.3), and phase convention ® (Sec-
tion 6.1) transformations. B

5.4.2. Feed Hand / Basis Reflection

The feed hand is determined by the design and inte-
gration of the receiver, such as the sign convention for
the voltages output by an orthomode transducer, which
determines the directions of the x and y axes in Fig-
ure 1; or any cable swaps that might occur between the
receiver and the backend, which swap the x and y axes.
Feed hand is also impacted by the total number of reflec-
tions in the antenna structure, which depends upon the
placement of the feed at the primary or secondary focus,
and the number of reflections in any beam waveguide
structure (e.g., Gruefl et al. 2004; Petrov et al. 2015) or
corrective mirrors designed to optimize sensitivity (e.g.,
Kildal et al. 1994; Granet & James 1997).

Normal reflection by a conducting surface, such that
the angles of incidence and reflection equal zero and the
incident and reflected rays are anti-parallel, can be con-
ceptualized in two different ways that arrive at the same
result. One way to model the observation of reflected
rays is by turning over the feed horn, which originally
points up at the sky, to point down at the reflector. This
approach is detailed in Appendix H.

Alternatively, the change in wave direction is modeled
by negating the z-axis, thereby producing a left-handed
coordinate system. The handedness of the reference
frame is also negated by exchanging the components
of the electric field. With reference to Equations (18)
through (20), swapping e, and e, negates Stokes Q and
V, which is equivalent to a +180° rotation about the
Stokes U axis. In a basis defined by circularly-polarized
receptors, swapping ey, and eg reverses the signs of both
Stokes U and V, which is equivalent to a £180° rotation
about the Stokes Q axis. In both cases, the rotation
is given by R = o9; it negates both the ellipticity x
(Eqn. 10) and the position angle ¢ (Eqn. 9).

Although the number of reflections in an antenna can
be easily counted, it is generally less feasible to account
for voltage negation or cable swapping. Therefore, the
feed hand is typically determined experimentally with
reference to previously published polarization data. For
example, as both x and v are negated upon reflection,
the feed hand can be unambiguously determined by ob-
serving a source with known ellipticity or Faraday rota-
tion measure. Given the total number of hand reversals
N, the feed hand matrix is defined by

R;, =ol. (85)

The negation of the position angle after normal reflec-
tion from a metal surface is noted in the context of a
more richly detailed treatment of the physics of reflec-
tion and refraction by Born & Wolf (1980). However, it
appears to be unrecognized in some important works on
radio polarimetry, which mention only the negation of
Stokes V (e.g., Hamaker et al. 1996; Robishaw & Heiles
2021). Appendix A of Clarke (2010) provides a care-
fully detailed derivation of both the linear and circular
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Figure 5. In the circular basis, the direction of the po-
larization vector, 8 = (S1, S2, S3)" = (V,Q,U)7, is defined
by the polar angles, £ and (. These angles together define
a right triangle on the surface of the Poincaré sphere with
hypotenuse equal to the colatitude, = /2 — 2, measured
with respect to the pole defined by positive S1 (Stokes V).
Also depicted is the longitude 2¢, measured with respect to
positive Sz (Stokes Q) toward positive S3 (Stokes U).

polarization of radiation that is observed after reflection,
including a historical account of some confusion that has
persisted on this topic.

5.4.3. Amxis of Symmetry

The axis of symmetry in the z-y plane depicted in
Figure 1 is defined as the position angle of a linearly-
polarized wave that produces equal responses in each
ideal receptor. In a basis defined by linearly-polarized
receptors, a linearly-polarized wave that oscillates along
x = y (positive Stokes U) will produce equal and in-
phase responses in each receptor; therefore, the sym-
metry angle has a nominal value of 45°. In a ba-
sis defined by circularly-polarized receptors, a linearly-
polarized wave that oscillates along the z axis will pro-
duce equal and in-phase responses in each receptor, and
the symmetry angle has a nominal value of 0°.

The symmetry axis of a receiver on steerable mount
describes its rotation about the line of sight with re-
spect to a reference point on the antenna structure. For
a fixed dipole on the ground, the symmetry axis de-
scribes its rotation about the zenith. Once established,
the symmetry angle is typically treated as a constant.
Any unintended rotation (either geometric or apparent;
e.g., owing to cross-coupling of the receptors) must be
determined through calibration of the orthonormal com-
ponent of deviation, which includes an orientation angle
¥ (Eqn. 80). Other known rotations are included in the
projection transformation described in Section 5.5.

5.5. Projection onto the Celestial Sphere

For radio astronomical observations, the incident elec-
tric field measured in the reference frame of the antenna
must be transformed to the celestial reference frame
adopted by the IAU. In this coordinate system, the elec-
tric field vector is described by its projection onto the
plane of the sky, with basis vectors & and ¢y pointing
North and East, respectively. When observing with a
fully-steerable antenna, this transformation is described
by a rotation about the line of sight through the paral-
lactic angle, which is well determined by geometry. In
the PSRCHIVE software (Hotan et al. 2004), the trans-
formation to celestial coordinates can be computed for
a wide variety of antenna mounts, or it can optionally
be replaced by a user-supplied table of transformations
that describe the direction-dependent response of the
antenna, as in the case of a dipole array (e.g., Asad
et al. 2016; Sokolowski et al. 2017).

Without a detailed electromagnetic model of a fixed
dipole, the direction-dependent response can be de-
scribed to first order as a geometric projection of the
receptors onto the sky. Such a transformation is a prod-
uct of a rotation about the Stokes V axis that describes
parallactic rotation about the line of sight, and a boost
along an axis in the Stokes () — U plane that describes
the combined effects of differential gain and apparent
nonorthogonality due to foreshortening of the projected
receptors. The combination of these effects causes the
symmetry axis (see Appendix C.5) of the projection
transformation to vary with the direction to the source.

Therefore, for a fixed dipole array, there is no funda-
mental degeneracy as described in Appendix 1.1, which
is a consequence of a single constant axis of symmetry.
That is, in principle, it is possible to determine 6 dof
of the response (all but the absolute gain) by observing
a polarized point source with a phased array of fixed
dipoles over a wide range of hour angles. However, as
described in Appendix 1.2, near multicollinearity may
arise when the rapidity of the boost along the Stokes V
axis is allowed to vary, causing numerical instability and
inflated uncertainty of the rapidity estimate.

The Lorentz boost caused by projection of fixed
dipoles onto the celestial sphere converts significant lev-
els of unpolarized flux into linearly-polarized flux. In
wide-field interferometric imaging experiments, this can
be exploited to fully constrain the instrumental response
using the unpolarized sky (e.g., Byrne et al. 2022; Kans-
abanik et al. 2025). A similar approach is generally not
possible in single-antenna observations owing to a com-
bination of stray radiation (e.g. Lockman 2002), radio
frequency interference (e.g. Offringa et al. 2010), and the
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unknown variation of the instrumental response over the
beam (Eqn. 55).

5.6. Faraday Rotation

During propagation through the interstellar medium
or the Earth’s ionosphere, an astrophysical signal expe-
riences Faraday rotation. This phenomenon, also known
as circular birefringence, arises because the natural
modes of propagation in a magnetized (non-relativsitic
and collisionless) plasma are circularly polarized, such
that LCP and RCP components of the electric field
propagate with different speeds. At a given frequency,
the resulting differential delay between LCP and RCP
components causes the electric field to rotate about the
line of sight. For example, if the signal propagates in
the direction of the magnetic field vector, then LCP is
delayed with respect to RCP (Manchester 1972; Ferriere
et al. 2021); the resulting transformation is equivalent
to rotating the electric field by AW around the line of
sight (counter-clockwise as seen by the observer).

7

Proof 5.2. In the circular basis (Eqn. 82), apply
differential phase (Eqn. 70), and return to the
original Cartesian basis.

F(A?) =R, 'R Ry

_ 11 e 0 1 —i

2\ § —i 0 eAY 1 4
[ cos AU —sin AW
sin AU cos AU

=R:(-AV)

The change in the position angle of the radiation,
A¥(v) = RM Zv—2, (86)

where RM is the rotation measure, c is the speed of
light, and v is the frequency of the radiation. Note that
birefringence is dispersive and the phase shift / rotation
is proportional to v~2; this differs from the differential
phase due to a path length difference, which is propor-
tional to v. The RM is proportional to the path integral
of the density of free electrons, n., times the strength of
the magnetic field, B, parallel to the direction of prop-
agation dz (e.g., Han et al. 2006)

D
RM:C/ ne B - dz, (87)
0

where D is the distance to the astrophysical source and

d -2
C=081—=2 (88)
cm 3 uGpce

If the magnetic or ionic properties of the ionosphere
fluctuate rapidly, either on timescales shorter than the
interval over which the Stokes parameters are integrated
or on spatial scales smaller than the volume sampled by
multipath propagation (e.g., Cordes et al. 2016; Suresh
& Cordes 2019), then the signal will be depolarized by
stochastic Faraday rotation (Melrose & Macquart 1998),
resulting in an impure Mueller matrix with no equivalent
Jones matrix (see Appendix C.7).

6. CALIBRATION

The response of each element of the signal path
may include an unknown component that must be de-
termined experimentally. This section briefly reviews
methods of calibrating each component in Equation (42)
and Figure 4, focusing primarily on the response of a
single antenna (single dish or phased array). Where rel-
evant, additional notes on interferometric calibration are
included.

6.1. Phase Convention

For linearly-polarized receptors, S3 equals Stokes V,
and complex conjugation negates the ellipticity angle.
For circularly-polarized receptors, S3 equals Stokes U,
and the position angle is negated by conjugation. Com-
plex conjugation of the electric field vector also negates
frequency in the spectral domain. Therefore, the phase
convention used to represent the electric field can be
determined by incorporating information from other
sources. For example, owing to dispersion, frequency
negation is immediately apparent during radio pulsar
signal analysis, and the phase convention must be known
to perform phase-coherent dispersion removal in radio
pulsar observations (e.g., van Straten & Bailes 2011).
Frequency negation can also be detected in continuum
observations over regions of the radio spectrum that in-
clude strong, well-defined spectral lines. In an inter-
ferometer, complex conjugation of the visibility matrix
computed for each antenna pair results in a 180° rota-
tion of the image of the brightness distribution on the
plane of the sky.

6.2. Receiver Gains

The receiver gains matrix, G, is often determined us-
ing observations of an artificial reference source with a
well-defined polarization state. For example, many re-
ceivers have a built-in source of broadband noise (e.g., a
noise diode coupled to the receptors) that can be used to
estimate gains as a function of radio frequency. Determi-
nation of G using only an artificial noise source is based
on the ideal feed assumptions, in which the receptors are
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orthogonal and there is no cross-coupling between them
(i.e., D is the identity matrix); and the artificial refer-
ence source illuminates the receptors equally (i.e., the re-
ceptors have identical responses to the reference source,
in both amplitude and phase). Although these assump-
tions are common, it is more accurate to experimentally
determine both D and the Stokes parameters intrinsic
to the artificial reference source (e.g., van Straten 2004),
as described in Section 6.3.

Even when fully modeling the deviations from an ideal
feed and polarization of the artificial reference source,
the ideal feed assumptions can provide a useful, and
sometimes necessary, first guess for G. Therefore, they
are an important part of polarimetric calibration for
both single antennas (e.g., von Hoensbroech & Xilouris
1997; Navarro et al. 1997; Gould & Lyne 1998; Han et al.
2009) and interferometric arrays (e.g., Johnston et al.
2008; Serylak et al. 2021). As shown in Section 5.2, the
polar decomposition of the complex gains,

G = GB,y(1)R,(9), (89)

has 3 dof: the absolute gain G, the differential gain ~,
and the differential phase ¢. To experimentally deter-
mine G requires a standard candle, i.e., a source with
known flux density at the radio frequency of the obser-
vations. Absolute gain calibration (also known as flux
calibration) is described in more detail in Section 7.2 of
van Straten et al. (2012). In an interferometer, unique
values of the complex gains must be determined for each
element in the array.

Differential gain mixes only Sy and S7, and differential
phase mixes only Sy and S3. Therefore, given observa-
tions of an ideal artificial reference source with known
polarization, the two unknown values of v and ¢ can
be solved independently. The following two subsections
derive solutions for v and ¢ based on the assumption
that a pure linearly polarized reference source induces
identical signals in the orthogonal receptors of an ideal
feed. In the linear basis, the Stokes parameters intrinsic
to such a source,

S . = Le[1,0,1,0]", (90)

where I,o is the intensity of the reference source.

6.2.1. Differential Phase

As a rotation about the S; axis, differential phase
mixes only So and S3, and to determine ¢ requires ob-
servations of a polarized reference source with known
intrinsic values of Sy and S3. In the linear basis, Sy and
Ss correspond to Stokes U and Stokes V, respectively;
in the circular basis, Sy and S5 correspond to Stokes Q
and Stokes U. Given the measured Stokes parameters of

the reference source, with observed values of 5% and S5,
Equations (19) and (20) can be solved for the intrinsic
and observed values of (ef(t)e;(t)); e.g.

(e5(t)er(t)) = (S2 +1iS3)/2. (91)

To relate the intrinsic values to their observed values,
consider the transformation of the intrinsic electric field
vector e(t) into the observed electric field vector as de-
scribed by Equation (70),

e(#) = (ew 0 >e(t). (92)

The observed value of

(e6 (B)ei (1)) = e (eg(t)ea(t) (93)

can then be used to solve for ¢; i.e.,

1 (e m)
?= 3 g(@kam>’ 64

where arg(z) is the argument of complex number z.

If the reference source produces an in-phase signal
in each receptor, such that the differential phase be-
tween eg(t) and eq(t) equals zero, then (ef(t)es(t)) is
real-valued and

6 = — ara (e ()4 (1)) = 3 tan ™ (S5/85). (95)

6.2.2. Differential Gain

As a boost along the S axis, differential gain mixes
only Sy and Sy; therefore, determination of v requires
observations of a polarized reference source with known
intrinsic values of Sy and S, where S; corresponds to
Stokes Q in the linear basis and to Stokes V in the cir-
cular basis. Given the measured Stokes parameters of
the reference source, with observed values of Sj and S,
Equations (17) and (18) can be solved for the intrinsic
and observed values of (|eg(t)|?) and (|e; (t)]?); e.g.

%)= (S0 +51)/2 (96)

(leo(?)
€1 2>:(SQ —Sl)/2 (97)

(lea(?)

To relate the intrinsic values to their observed values,
consider the transformation of the intrinsic electric field
vector e(t) into the observed electric field vector as de-
scribed by Equation (67),

e(t) =G ( g F(jl ) e(t). (98)
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The observed values of
(leg(0)?) =G?T*(leo(t)|*)
(leh(®)?) =G°T2(|les (t)[?)
can be used to solve for I'; i.e.,
(@) (ea )2\
r= ({2 (aon) (100)

If the reference source produces a signal with equal
power in each receptor, then (|e1(t)]?) = (|eg(t)|?) and

6.3. Deviations from Ideal

For a single antenna, the deviations from an ideal
feed, D, can be determined by modeling variations in
the observed polarization of an astrophysical source as a
function of parallactic angle (e.g., Stinebring et al. 1984;
Xilouris 1991; McKinnon 1992; Heiles et al. 2001; John-
ston 2002; van Straten 2004). In some treatments, D is
estimated after the complex receiver gains, G, have been
calibrated; in others, D and G are jointly determined.
Some of the models used to describe D are discussed and
compared in Section 7. In an interferometer, unique val-
ues of J; = G;D; must be determined for each element
in the array, indexed by <. When used as a phased-array,
only the Jones matrix of the sum, J = >, J;, must be
determined.

More broadly, deviations from the ideal feed assump-
tions include the unintended polarization intrinsic to the
artificial reference source, p,.¢. If observations of the ref-
erence source are available, then p,.; can be included in
the model and jointly determined along with G and D.
When doing so, the reference source can be modeled as
a free-space signal that is transmitted into the feed, or
as a guided signal on a transmission line that is coupled
after reception.

A free-space signal may be transmitted into the feed
using a dipole with known orientation. Typically, the
polarization of such an artificial reference signal is dis-
torted by near-field effects, mutual coupling, resonances,
and standing waves between the transmitting dipole,
feed horn and antenna structure. When modeled as a
free-space signal, the artificial reference source is trans-
formed by the product, GD, as in van Straten (2004).

Alternatively, the artificial reference source may be
coupled to the astronomical signal after reception, at
which point the two polarizations propagate as a pair of
guided signals on separate transmission lines. This re-
quires splitting the artificial reference source signal and

coupling it identically to the two orthogonally-polarized
signals, ideally before any amplification. Typically, the
polarization of such a reference signal is distorted by
mismatched impedance, insertion losses, reflections, and
standing waves. When modeling an artificial reference
source that is guided and coupled, p,.; is transformed
by only G, as in Bailes et al. (2020).

In either case (free-space or guided transmission), the
instrumental response to an artificial noise source typi-
cally differs from its response to an astrophysical source.
However, in many experiments, the absolute polariza-
tion of the artificial reference source is irrelevant. For
example, techniques used to update the differential gain
and phase given known values of p,.; and D (e.g., Ord
et al. 2004) rely only on the temporal stability of these
quantities. Therefore, any differences in the instrumen-
tal response to astrophysical and artificial sources can
be absorbed by redefinition of p,.¢.

This distinction is particularly important when using
an astrophysical source as a polarized reference source
(e.g., van Straten 2013). In this case, D may be cor-
rupted by unmodeled ionospheric Faraday rotation (e.g.,
Rogers et al. 2024). To avoid also corrupting p,., it
is necessary to model the artificial reference source as
though it is coupled after D, regardless of the actual
receiver design.

6.4. Nominal Feed Configuration

Even the nominal feed configuration may require some
reasoning, informed by observations, about the hand-
edness and symmetry axis of the receiver. For exam-
ple, any linear transformation of the electric field that
negates either the ellipticity or the position angle must
negate both. Therefore, regardless of the polarization
of the receptors, if the sign of either the ellipticity or
position angle of an observed source is known, then
the handedness of the receptor basis can be unambigu-
ously determined. Even without an estimate of the ab-
solute value of the position angle, its sign can be in-
ferred from either the RM or the slope of the canoni-
cal S-shaped sweep of position angle described by the
Rotating Vector Model (RVM; Radhakrishnan & Cooke
1969) in longitude-resolved observations of the polarized
emission from radio pulsars.

6.5. Celestial Sphere Projection

In principle, the projection between the celestial ref-
erence frame and the nominal receptor basis may be
completely determined by known geometry; however,
it may also require sophisticated modeling of direction-
dependent effects. For example, gravitational deforma-
tion of an antenna (both the reflecting surface and the
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support structure) can cause the polarimetric response
to vary with pointing direction (Robishaw & Heiles 2021;
Islam et al. 2024). Furthermore, the response of a dipole
array varies with direction to the source in a manner that
is not well-described by the first-order geometric effects
of projection. Therefore, the accuracy with which the
instrumental response can be determined will be limited
by the fidelity of the electromagnetic model used to de-
scribe direction-dependent effects specific to the antenna
design (e.g., Wijnholds et al. 2011; Mitchell et al. 2012;
Sutinjo et al. 2015).

On some radio telescopes, either the entire reflector
can be mechanically rotated about the line of sight
(e.g., Hotan et al. 2021) or the receiver can be rotated
about the line of sight with respect to the reflector (e.g.,
Staveley-Smith et al. 1996). This feature is typically
used to compensate for the parallactic rotation of the
observatory with respect to the sky; however, it can also
be used to simulate observation over a range of parallac-
tic angles (e.g., Guillemot et al. 2023). For such systems,
the mechanical rotation can be included as a component
of the projection matrix. For example, if the feed horn
is rotated with respect to the reflector, the projection
matrix may be decomposed as

P = Ry (Oreca)J (I, m)Rz (Opara), (102)

where Ofeeq is the feed horn rotation, J(I,m) models

direction-dependent effects of the antenna (e.g., as a
function of the direction cosines | and m that describe
angular offsets from the primary axis), and Opara is the
parallactic angle (e.g., Guillemot et al. 2025).

6.6. Faraday Rotation

To calibrate Faraday rotation, it is necessary to first
estimate the Faraday Rotation Measure (RM). A wide
variety of techniques have been developed for RM es-
timation, including directly modeling the variation in
observed position angle AWV as a function of radio fre-
quency (e.g., Noutsos et al. 2008); iteratively comput-
ing the weighted mean position-angle difference between
two radio frequency bands (Han et al. 2006; Caleb et al.
2019); and searching for the peak in linearly-polarized
flux after integrating over radio frequency as a function
of trial RM (e.g., Hotan et al. 2005; Brentjens & de
Bruyn 2005).

In principle, Faraday rotation can be corrected by ro-
tating the Stokes polarization vector S(v) observed at
each frequency by —AW(r) about the Stokes V axis.
This effectively yields the position angle as though ob-
served at infinite radio frequency. However, such a cor-
rection would later have to be inverted when refining
the RM estimate, which requires a set of observations

made at finite radio frequencies. Therefore, the Faraday
rotation at each frequency v is corrected with respect
to the linear polarization state observed at some fidu-
cial frequency vy (typically the centre frequency of the
band); i.e.,

AV (v) =RMc (v 2 —15?). (103)

The RM may also vary as a function of time over
the duration of the integration. For example, the iono-
sphere can cause the RM to vary by several rad m~2 on
timescales of hours. These variations can be predicted
using a model of the geomagnetic field and a map of
ionospheric electron content (e.g., Porayko et al. 2019).
Temporal variations in RM also cause the position an-
gle observed at the fiducial frequency to vary with time;
therefore, Faraday rotation at time ¢ is corrected by

A¥(v,t) = RMoc® (v~ 2 — 15 %) + ARM(t) v 2.
(104)
where RMj is constant and ARM(¢) = RM(¢) — RMo.

7. POLARIMETER MODEL SELECTION

Accurate polarimetric calibration requires a model of
the instrumental response that includes deviations from
an ideal feed. Several different approaches to decompos-
ing the single-antenna instrumental response have been
proposed in the published literature. Broadly, these
models can be divided into those based on Jones ma-
trices and those based on Mueller matrices; e.g., the
Jones matrix equation (11) of Hamaker et al. (1996,
hereafter HBS96); the Jones matrix equation (19) of
Britton (2000, hereafter B2000); and the Mueller matrix
equation (22) of Heiles et al. (2001, hereafter H2001).
In principle, a Mueller matrix has an additional 9 dof
and can describe any linear transformation of the Stokes
parameters, including non-linear transformations of the
electric field such as complex conjugation. However,
these additional dof are not employed in H2001, where
the Mueller matrices are derived from Jones matrices.

Regardless of the objects used to represent polariza-
tion state and transformations, when applied to exper-
imental data analysis, a mathematical model of the in-
strumental response should be

1. physically motivated, such that model components
describe elements of the signal path;

2. surjective, such that the parameter space spans all
possible transformations of interest;

3. injective, such that each transformation is de-
scribed by a unique set of parameters;
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4. self-consistent, such that the assumed properties
of the system are preserved; and

5. numerically stable, at least in the vicinity of the
anticipated solution.

In the following subsections, these criteria are dis-
cussed in the context of single-antenna observations of
a point source, primarily using the models proposed by
HBS96, B2000, and H2001 as examples. When refer-
ring to the model parameters used in these works, the
original mathematical symbols are retained; these may
conflict with the symbols employed in the previous sec-
tions of this paper.

7.1. Physical Motivation

Hamaker (2000) proposed a purely algebraic decom-
position of the instrumental response using a single polar
decomposition, and this approach is one of the two im-
plemented by van Straten (2004). Although simple and
useful, the polar decomposition is not directly amenable
to physically meaningful interpretation. It does not
model the order in which elements in the signal chain
are encountered, and it does not permit separation of
backend and frontend transformations.

In practice, it proves useful to decompose the instru-
mental Jones matrix into a product of backend and fron-
tend transformations, such as G and D, respectively,
of HBS96. The frontend describes the non-ideal cross-
coupling between the receptors, and is typically assumed
to remain stable over timescales of the order of days.
Therefore, the frontend can be calibrated less frequently
than the backend component, which describes the com-
plex gains applied to the receptors. These gains are typi-
cally adjusted at the start of each observation, especially
if the system equivalent flux density varies strongly with
position on the sky. HBS96, B2000, and H2001 describe
models that reflect the order in which transformations
occur, and that can be decomposed into frontend and
backend components.

7.2. Surjectivity

When considering only linear transformations of the
electric field by a single antenna, as represented using
Jones matrices, a surjective model must have 7 indepen-
dent dof. If the absolute gain is treated as a scalar multi-
plier, then the matrix component of the transformation
must be described by six parameters. In the framework
developed by B2000, these 6 dof describe three Lorentz
boosts that mix the total intensity with Stokes Q, U,
and V and three Euclidean rotations about the Stokes
Q, U, and V axes.

The model developed by H2001 includes only 5 of
these 6 dof: the differential gain, AG (eq. 20) describes

the mixing between Stokes I and Q; the symmetric cross-
coupling amplitude and phase, € and ¢ (eq. 18) describe
the mixing of Stokes I with U and V; the differential
phase, ¥ (eq. 20) describes a rotation about the Stokes
Q axis, which mixes Stokes U and V; and the ellipticity
angle, a (eq. 15) describes a rotation about the Stokes U
axis, which mixes Stokes QQ and V. Missing from this list
is the rotation about the Stokes V axis that corresponds
to physically rotating the receiver about the line of sight,
which mixes Stokes Q and U. As noted in H2001, this
rotation can be constrained only through observation of
a source with an accurately known position angle. The
same conclusion is reached in Appendix B of van Straten
(2004).

In HBS96, the product of G and D has 8 dof (four
complex-valued matrix elements: g, g4, dp, and dy) be-
cause the relative phase between each pair of array el-
ements is important when computing the visibility ma-
trix (Eqn. 51). The absolute phase can be eliminated by
replacing G with its polar decomposition.

7.3. Injectivity

A model that does not injectively map the vector space
of its parameters to that of the transformations they
describe leads to ambiguous solutions. For example,
for circularly-polarized receptors, both the differential
phase and the orientation of the receiver about the line
of sight correspond to rotations about the Stokes V axis.
Therefore, it is necessary to ensure that the rotation axes
in a model of the receiver are defined with respect to the
(S1, S2, S3) basis and not the (Q, U, V) basis.

Section 5.1 of H2001 describes ambiguity in the el-
lipticity angle, «, and differential phase, v, that arises
in the case of linearly-polarized receptors. They as-
sert that two possible solutions, (a1,%1) = (0,%) and
(g, 9) = (7/2,19 + m), differ by only a 180° rotation
about the Stokes V axis, which negates the unknown val-
ues of Stokes Q and U of the calibrator source. Referring
to Appendix D.3 and Section 4 of B2000, this ambiguity
can be eliminated by restricting the ellipticity angle to
the interval —7/4 < o < /4.

7.4. Self-consistency

Many treatments begin with a description of linear
transformations of the electric field, as represented by
Jones matrices. In this case, the corresponding Mueller
matrices should be pure. However, to simplify the
manual expansion of products of these Mueller matri-
ces, some authors introduce small-value approximations.
These typically result in an impure Mueller matrix that
is inconsistent with the assumed linear response to the
electric field.
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For example, after assuming that the differential gain
AG is small, H2001 arrive at equation (20),

1 AG/2 0 0

M, = AG/2 1 0 0 . (105)
- 0 0 cosyY —siny

0 0 sinty costy

In principle, this Mueller matrix can be shown to be im-
pure by computing its associated target coherency ma-
trix and applying the test defined by Equation (C35).
In this particular case, it is more instructive and equally
valid to show that this Mueller matrix cannot be pure
because it can transform a purely polarized state into a
nonphysical state that fails to satisfy Equation (23).

Consider the observation of an ideal reference source
(Eqn. 90) with Stokes parameters, S = I[1,0,1,0]7.
The transformed Stokes parameters,

S' =M, S =I[1,AG/2,cos ¢, sin )", (106)

have a degree of polarization,

A 2
P =11+ f > 1. (107)

As no linear transformation of the electric field vec-
tor can convert a valid polarization state into an over-
polarized state (Proof 4.3), M | cannot have an equiv-
alent Jones matrix and therefore must be impure. Not
all impure Muller matrices result in over-polarization;
some impure transformations depolarize a purely polar-
ized state (e.g. see Appendix C.7), and no linear trans-
formation of the electric field is able to do so (Proof 4.4).
This specific example demonstrates the potential pitfalls
of using Mueller matrices and small-value approxima-
tions during numerical analysis.

7.5. Numerical Stability

Numerical stability of a mathematical model is criti-
cal when fitting the model to experimental data. The
fundamental problems caused by numerical instability
impact on any method of model fitting; however, for
the purpose of concrete illustration, this section and the
analysis in Appendix I focus on techniques that opti-
mize a merit function by inverting a Hessian matrix that
encodes its local curvature. In this case, a model is un-
stable when the Hessian matrix becomes ill-conditioned
(i.e., prone to large numerical errors during inversion)
or singular (i.e., non-invertible). The Hessian is ill-
conditioned when two or more model parameters are
highly collinear; it is singular when the merit function
is effectively independent of one or more of its parame-
ters, such that the partial derivatives of the model with
respect to its degenerate parameters are zero.

Three types of numerical instability — fundamental,
extrinsic, and intrinsic — are distinguished as follows.
Fundamental instability arises when the available data
do not constrain all of the dof in a surjective model;
without any further assumptions or constraints, the de-
generate dof will cause numerical methods to fail. An
extrinsically unstable model provides no means of iso-
lating degenerate dof, such that necessary constraining
assumptions can be introduced when fundamental insta-
bility is encountered. A model is intrinsically unstable
if it causes numerical methods to fail even when there
are sufficient constraints on all dof.

7.5.1. Fundamental Instability

Appendix B of van Straten (2004) describes the funda-
mental instability caused by 2 degenerate dof that arise
when the only available experimental constraints are ob-
servations of unknown sources made at multiple paral-
lactic angles. In H2001, these degeneracies are avoided
by introducing two assumptions. The rotation about
the line of sight is assumed to be zero; and the calibrator
source is assumed to have zero circular polarization. The
latter assumption is typically invalid when the calibra-
tor source is a pulsar; therefore, additional observations
of other sources with either known or assumed circu-
lar polarization must be incorporated to constrain the
instrumental mixing between I and V (e.g., Liao et al.
2016).

The analysis of fundamental instability is extended in
Appendix I, which identifies additional degenerate dof in
impure Mueller matrices, owing to unknown components
of the instrumental response that commute with the ma-
trix argument. It also presents an example of parameter
collinearity that arises when an unknown component of
the Stokes parameters intrinsic to the observed sources
is an eigenvector of the matrix argument. Owing to the
degenerate sign of Stokes V identified in Appendix 1.1,
the phase convention of the backend cannot be deter-
mined using only unknown sources observed at multiple
parallactic angles, regardless of the basis defined by the
polarization of the receptors.

Section 5.2 of H2001 identifies this degeneracy only
for the circular basis, and incorrectly concludes that two
solutions, one with oy = —m/4 and the other with ay =
7 /4, differ only by negation of Stokes Q. Stokes V is
also negated by the 180° rotation about the Stokes U
axis that describes the transformation from «; to «s.
H2001 also incorrectly asserts that negating Stokes Q
rotates the position angle by 90°. Negating Stokes Q
also negates the position angle, such that P.A.; = 7/2—
P.A..
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7.5.2. Eaxtrinsic Instability

Extrinsic instability arises when the degenerate dof in
a model cannot be isolated from other dof. For exam-
ple, the 4 dof of the frontend transformation must effec-
tively model two Euclidean rotations and two Lorentz
boosts. When the receptors are linearly polarized, these
correspond to a rotation about and a boost along the
Stokes U axis, and 2 potentially degenerate dof includ-
ing a rotation about and a boost along the Stokes V
axis. These rotations and boosts are clearly separated
in equation (19) of B2000. In H2001, the Stokes V boost
is effectively differentiated from the Stokes U boost by
the cross-coupling phase, and the Stokes V rotation is
assumed to be zero. In the deviations from an ideal
feed D employed by HBS96, the 4 dof are inseparably
combined in the two complex-valued elements, d,, and
d,. Consequently, the HBS96 model can be applied to
single-antenna observations of point sources only if suffi-
cient observational constraints eliminate the known de-
generacies.

7.5.3. Intrinsic Instability

Appendix II of Conway & Kronberg (1969) describes
an intrinsically unstable model of undesirable cross cou-
pling between the two receptors of an imperfect feed.
This model is adapted in equation (A2) of Stinebring
et al. (1984) and equation (16) of H2001,

i1
e = L oad™ ), (108)
ege 102 1

The equation is intrinsically unstable in the vicinity of
the ideal solution owing to the polar coordinate singu-
larity at the origin, where the phase angle ¢; becomes
undetermined as the cross-coupling amplitude €; ap-
proaches zero. This problem persists in equation (18)
of H2001, where ¢ is poorly constrained when e is small.
Johnston (2002) addresses this problem by directly mod-
eling the real and imaginary components of all complex-
valued quantities, instead of their amplitude and phase.
In contrast, equation (15) of B2000 is unstable only at
the poles, where y = £7/4, and the orientation 6 be-
comes degenerate with the differential phase. When the
basis is correctly defined, these poles are well away from
the region in which the anticipated solution lies.

8. CONCLUSION

The geometry of the polarization ellipse that defines
the Stokes parameters is elegantly connected to that of
the coherency matrix via the Pauli matrices. Geometry
also relates linear transformations of the electric field
to their impact on the Stokes parameters, leading to a

physically meaningful and broadly applicable classifica-
tion of polarimetric transformations. The properties of
these transformations simplify the analysis of the ele-
ments of the signal path and yield both theoretical in-
sights and practical guidelines that can be applied dur-
ing calibration.

These guidelines include criteria for evaluating and
selecting a model of the instrumental response that per-
forms well during numerical analysis of experimental
data. Among those considered, the model introduced
by Britton (2000) satisfies all of the selection criteria for
single-antenna observations of a point source. In this
physically-motivated and self-consistent model, there is
a one-to-one mapping between parameters and linear
transformations, which are described using equations
that remain numerically stable during modeling.

This introduction focuses primarily on the mathemat-
ical and conceptual foundations of polarimetry, with em-
phasis on the numerical analysis of radio astronomical
observations. For a broader review of both the physi-
cal processes that produce polarized radiation and the
astrophysical phenomena that can be studied through
polarimetry, the review by Trippe (2014) is exception-
ally thorough and insightful.

Radio polarimetry is a vibrant field of research that
continues to yield transformative insights and discov-
eries in astrophysics, driven by both technological ad-
vances and innovative techniques. For example, the rel-
atively recent discovery of polarization closure traces
(Broderick & Pesce 2020; Samuel et al. 2022) enabled
the first images of magnetic field structure near the
MS87 black hole using very long baseline interferome-
try (Event Horizon Telescope Collaboration et al. 2021).
Novel techniques of high-fidelity polarimetry led to the
discovery of a surprisingly high degree of linear polariza-
tion in low-frequency radio images of solar bursts (Dey
et al. 2025). At even higher time resolution, measure-
ments of the polarized radiation from pulsars, magne-
tars and fast radio bursts continue to reveal new in-
sights into their nature and extreme environments (e.g.,
Camilo et al. 2006; Eatough et al. 2013; Michilli et al.
2018; Primak et al. 2022).

Current and future scientific goals, such as detect-
ing the neutral Hydrogen emission from the epoch of
reionization (e.g., Trott et al. 2018; Mertens et al. 2020)
and understanding the origin and evolution of interstel-
lar and intergalactic magnetic fields (e.g., Han 2017),
motivate the development of next-generation facilities
and methods of polarimetric analysis, such as Faraday
tomography (e.g., Ganguly et al. 2000; Van Eck et al.
2017). Furthermore, the unprecedented sensitivity, res-
olution, and fields of view of new observatories necessi-
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tate further research and development of novel methods
of direction-dependent interferometric calibration (e.g.,
Smirnov & Tasse 2015) and correction of ionospheric
Faraday rotation (e.g., de Gasperin et al. 2019). Im-
proved polarimetric fidelity also has the potential to in-
crease the sensitivity of pulsar timing array experiments
to the low-frequency stochastic gravitational wave back-
ground (e.g., Guillemot et al. 2023; Rogers et al. 2024;
Guillemot et al. 2025).

Given the breadth and potential impact of scientific
knowledge that remains to be discovered through po-
larimetry, I hope that this introduction might help oth-
ers to further pursue the subject.
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APPENDIX

A. SIGNAL PROCESSING FUNDAMENTALS

This section reviews the theoretical basis for using
complex numbers to represent signals and Jones ma-
trices to represent linear transformations of the electric
field.

A.1. The Analytic Signal

The voltage signal from each receptor is a real-valued
function of time, or process, that may be represented by
its associated analytic signal. The analytic signal, also
known as Gabor’s complex signal, is a complex-valued
representation of a real-valued process that provides its
instantaneous amplitude and phase. The analytic signal
associated with a process, x(t), is defined by

2(t) = a(t) + id(t), (A1)

where #(t) is the Hilbert transform of z(t) (Papoulis
1965). Following a Fourier transform, defined by

X(v) = /00 x(t) exp(—i2wvt)dt, (A2)

oo

the Hilbert transform is equivalent to

X(v)=Hv)X(v), (A3)
where
mo={ 07w

is known as the quadrature filter (Papoulis 1965). The
quadrature filter can be understood as a 90° phase

shifter by noting that the Hilbert transform of cos(vyt)
is equal to sin(rpt) (see Table 2). Using the quadrature
filter, it can also be shown that the Fourier transform of
the analytic signal, Z(v), is equal to zero for v < 0.

Z(w) = X()+iX(v)
=X{)+iHv)X(v)

(A5)
:{2X@)y>0

0 v<0

Conversely, the analytic signal associated with x(t)
is produced by suppressing the negative frequencies in
X(v).

As it is derived from the real-valued process, the an-
alytic signal does not contain any additional informa-
tion. However, the analytic signals associated with two
orthogonal senses of polarization, eg(t) and e;(t), facili-
tate calculation of the coherency matrix.

A.2. Narrow-band Approximation

Presented with a scalar input signal, e(t), the out-
put of a one-dimensional linear time-invariant system is
given by the convolution,

(o)
et)=(xe)t) = / x(7)j(t — 7)dr. (A6)
— 00
where j(¢) is the one-dimensional impulse response

function. In a two-dimensional system, each output sig-
nal is given by a linear combination of the input signals,

e1(t) = (Joo * o) (t) + (jor * e1)(t),

ep(t) = (Jro * eo)(t) + (11 * e1)(t). (A7)
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Table 2. Useful Fourier Transform pairs. The left column
lists functions of time. In the right column, the correspond-
ing Fourier transform is given as a function of oscillation
frequency, v.

z(t) X(v)
cos(2mvot) (O(v+w)+6(v—w))/2
sin(27vot) 1(0(v+w) —0(v—10))/2

Quadrature Filter
B(t) = (7t)”! H(v) = { vy
i v<0

Lowpass Filter

0 |v/Av|>1/2
1/2 |v/Av|=1/2
1 |v/Av|<1/2

Shift Theorem

m(t) = sinc(rAvt) | H(v/Av) =

() =zt +71) X'(v) = X(v) exp(imvT)

Let eq(t) and e;(t) be the components of the electric
field vector e(t) and jmn(t) be the elements of the 2 x 2
impulse response matrix, j(t). By the convolution theo-
rem, Equation (A7) is equivalent to

E'(v)=J()E(v), (A8)

where J(v) and E(v) are the Fourier transforms of
j(t) and e(t). Under the assumption that J(v) is ap-
proximately constant over a sufficiently narrow range of
frequencies, convolution reduces to multiplication by a
Jones matrix.

B. VECTOR, MATRIX, AND TENSOR NOTATION

The following typographical conventions are used
to indicate the dimensions of mathematical symbols.
Scalar quantities such as the real value = or the complex
value z are typeset in italics. All vectors are typeset with
a bold italic font. Two-dimensional vectors, such as the
electric field e, are not underlined. Three-dimensional
vectors, such as the Stokes polarization vector S, have a
single underline. Four-dimensional vectors, such as the
Stokes four-vector S, have a double underline.

All matrices have a bold roman font; 2 x 2 matrices
like the Jones matrix J are not underlined; 3 x 3 matrices
like the depolarizer matrix M 5 are underlined once; and
4 x 4 matrices like the Mueller matrix M are underlined
twice. Rank 4 tensors, typeset using a bold calligraphic

font, include the two-dimensional polarization transfer
tensor U and the four-dimensional 7~ in Appendix C.6.

Unit vectors, such as a receptor with unity gain # or a
rotation axis n, are decorated with a hat. A tilde is used
to denote both singular matrices and null four-vectors,
such as the instantaneous coherency matrix p and Stokes
parameters § computed from a single instance of the
electric field.

The elements of a column vector are labeled with a

sub-script, as in the two components of the electric field,

e=<ew>. (B1)

and the four components of the Stokes parameters, S,,.
To distinguish between Jones vectors that represent the
electric field and those that represent receptors, the lat-
ter are described using row vectors with a super-scripted
index; e.g.

r=(r"rY). (B2)

The Hermitian transpose converts a column vector to
a row vector (and vice versa) and converts each compo-
nent to its complex conjugate; e.g.

el = (ex, €). (B3)

x Y

The scalar product (or dot product) between a row
vector and a column vector is given by

r-e=1%; +1rey =1'e;, (B4)

where the last equality uses the Einstein convention
that implies summation over the repeated index i. A
scalar product is implied when a row vector on the left
is multiplied by a column vector on the right; i.e.,

re=r-e=r'e. (B5)

Using the same index notation, the element in the "

row and v*® column of a matrix A is

A (B6)

and the p*™ row and v*" column of a matrix product is
given by the sum

{A B} = A)BY. (BT)

Similarly, the ‘" row of a matrix times a column vector
is given by
{Az}, = A, (B8)
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Vectors and matrices can be seen as rank 1 and rank 2
tensors, respectively, where the rank of a tensor is equal
to the number of indeces required to define its elements.
The elements of a rank 4 tensor are described using four
indeces; e.g.

Al (B9)

Given two tensors, a rank N tensor A and a rank
M tensor B, the tensor product A ® B yields a rank
N + M tensor. For example, the tensor product of two
matrices (each a rank 2 tensor) yields a rank 4 tensor
with elements given by

{A@B}) = A/B). (B10)

The tensor product of a column vector and a row vector
(each a rank 1 tensor) yields a matrix (rank 2 tensor)
with elements _

{e@r}) =en. (B11)

A tensor product is implied when a column vector on
the left is multiplied by a row vector on the right; e.g.

er=eQr. (B12)

A contraction of two tensors, A- B, is defined as a tensor
product followed by summation over a pair of matching
indeces, thereby reducing the rank of the result of the
tensor product by two. For example, the scalar prod-
uct of a row vector and column vector is equivalent to
a contraction. Each is a rank 1 tensor and their tensor
product yields a rank 2 tensor; summation over their
indeces, as in Equation (B4), yields a scalar (rank 0
tensor). Similarly, the product of two matrices is equiv-
alent to a tensor contraction. Each is a rank 2 tensor
and their tensor product yields a rank 4 tensor; summa-
tion over a pair of indeces, as in Equation (B7), yields
a rank 2 tensor (another matrix).
A double contraction of two tensors, A: B, is defined as
a tensor product followed by summation over two pairs
of matching indeces, thereby reducing the rank of the
result of the tensor product by four. For example, the
double contraction of a rank 4 tensor U with a (rank 2)
matrix C yields another (rank 2) matrix with elements
given by
{u:cy, =uncy. (B13)

uK

Using the Einstein summation convention, the trace
of a matrix A is
Tr [A] = A (B14)

and the trace of a matrix product

Tr[AB] =Tr[BA] = A}Bf = A:B=B:A. (B15)

That is, the trace of a matrix product is equivalent to
the double contraction of the matrices, also known as
the projection with respect to the trace inner product.
Like the scalar product of two vectors, this projection is
symmetric and matrices A and B are orthogonal with
respect to the trace inner product if A: B = 0.

Equations (46) and (47) introduce transformation
properties exhibited by two tensor double contractions.
Equation (46) follows from the definition of the tensor
product (Eqns. [44] and [B10]).

Proof B.1.

{(A®B):C} ={A®B}/» C} Equ. (B13)

= A B)CY Eqn. (B10)
=A;(B:C) Eqn. (B15)
={A(B: C)}Z

7

Likewise, Equation (47) follows from the definition of
the ® operator (Eqn. 45).

Proof B.2.

{(A&B):C} = {A&B} C5 Ean. (B13

)
= A}B/CY Eqn. (45)
= A, {C B} Eqn. (B7)
= {ACB}, Eqn. (B7)

C. LINEAR ALGEBRA FUNDAMENTALS

This section reviews the elements of linear algebra
used in this work, beginning with the Hermitian basis
matrices. The spectral decomposition is used to derive
the axis-angle representations of rotations and boosts,
the symmetry properties of which are used to identify
matrices that commute and the eigenmatrices of a con-
gruence transformation. Finally, the symmetry between
Equations (44) and (45) is used to define a pure Mueller
matrix and its associated Jones matrix, and an example
of a depolarizing impure Mueller matrix is presented.

C.1. Hermitian Basis Matrices

The Hermitian basis matrices (Eqn. 15) have a num-
ber of useful algebraic properties that enable meaning-
ful geometric interpretations of the equations used in
this work. When the basis matrices are indexed with
a Greek character, the index is understood to span all
dimensions including the identity; e.g., u € {0,1,2,3}.
When Latin characters are used, the index is understood
to span only the Pauli matrces; e.g., m € {1,2,3}. The
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following identities prove useful in this work.

Tr[o;]=0 (C1)
loi|=—1 (C2)

op ol =lod +lol wtv  (C3)
0,:0,=20,, (C4)
0,0;="0;; 00+ i€, Ok (C5)

In the last identity, €;;; is the permutation symbol and
summation over the index k is implied. Equation (C1)
expresses the traceless property of the Pauli matrices.
Equations (C2) and (C3) can be used to show that

|wuou] = o] = af — 2t — 23 — a3, (C6)

That is, the determinant of a linear combination of the

Hermitian basis matrices is equal to the invariant in-
terval of the four-vector of the scalar coeflicients, z,,.
Equation (C4) states that the Hermitian basis matri-
ces are mutually orthogonal with respect to the trace
inner product. The first term on the right-hand side of
Equation (C5) identifies the Pauli matrices as the square
roots of og. The second term describes how the Pauli
matrices behave like the basis vectors of a right-handed
coordinate system, where v, X @j = €1 Uy,. Using this
identity, the product of two matrices,

AB = (aoo+a-o)(bog+b- o)

C7
= (ab+a-b)og+ (ab+ba +ia xb) - o, (€7)

where o = (01, 02, 03) is the Pauli vector that appears
in Equations (59) and (60).

C.2. Basis Transformations

A pair of orthonormal receptors, ¢ and 71, have unit
length and are orthogonal; that is, they satisfy

;- ’IA"}L = (Si’j. (CS)

The projection of the electric field vector onto a pair
of orthonormal receptors defines a basis transformation
that is equivalent to a unitary Jones matrix.

Proof C.1. Let

=~
I
Y
e P $3
= (=}
N——

such that
{RR'}] = (R} {R}]  Equ. (B7)
gk fat
=17} {Tj}k
=77 Eqn. (B4)
= 5i,j Eqn. (CS)

That is, RR = o¢; therefore, Rf = R~1.

J

In general, a unitary matrix has a determinant equal
to exp(ig), and multiplication by exp(—i¢/2) yields a
unimodular matrix (with |R| = 1). Basis transforma-
tions defined by unitary matrices are used extensively
throughout both Section 5 and the following sections of
the appendix.

C.3. Spectral Decomposition

The eigenvalues A and eigenvectors v of a matrix A
satisfy the following (logically-equivalent) equations,

Av=> v & (A-A)v=0, (C9)

where I is the identity matrix with the dimensions of

A. Equation (C9) can be expressed simultaneously for
all eigenvalue/eigenvector pairs by AR = RA, where
the k' column of R is the unit eigenvector ¥, and the
diagonal matrix A is defined by Ai = 0; k. This can
be rearranged to yield the eigendecomposition of A,

A =RAR™. (C10)

If A is normal (i.e., ATA = AAT), and v is an eigen-
vector of A with associated eigenvalue A, then v is also
an eigenvector of At with associated eigenvalue \*.

Proof C.2. Define L = A — AI and consider

[Lfof? = (Lfv)' (LTv)

=oLLMw

=v'L'Lv L is normal
= (Lv)' L

= |Lo|?

=|(A-M)v*=0  Eqn. (C9)

Therefore LTv = (AJr — )\*I) v=0.
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Furthermore, if A is normal, then Equation (C10) is
equivalent to a congruence transformation by a unitary
matrix known as its spectral decomposition,

A =RAR'. (C11)

Proof C.3. If A is normal, then

No)t o5 = ol (Ajvj)  Proof C.2
Al -0 = Al - D,
(N = X)®f -9, =0

If \; # \;j, then &! -9, = 0 and
{RIR}] = (R} {R}]
k
= {UI} {0}, =] -9;=0,

That is, RTR = I; therefore, Rf = R~1.

In the natural basis defined by R, the matrix A be-
comes the diagonal matrix,

A =RTAR. (C12)

Both Hermitian and unitary matrices are normal, and
each takes diagonal form in the natural basis defined by
its eigenvectors. Consequently, any Hermitian matrix
can be diagonalized such that it is equivalent to a dif-
ferential gain transformation (see Section 5.2.1) in its
natural basis. Similarly, any unitary matrix is equiva-
lent to differential phase (see Section 5.2.2) in its natural
basis. This is applied in Proof 5.2, where rotation about
the line of sight is shown to be equivalent to differential
phase between the circularly-polarized natural modes of
a magnetized cold plasma.

The spectral decomposition can also be written as a
linear combination of outer products,

A=)\ 0 @D (C13)

Proof C.4.
Al = {RAR'Y/ Eqn. (C11)
= (R} (A}, {RTY Eqn. (BY)
— {&r}: Ont M {éj}j
=X {éx}; {é};}j
= {&® éL}Z Eqn. (B12)

If the eigenvalues are distinct, then
Pp= 0,00 (C14)

form a complete set of mutually orthogonal projection
matrices; i.e.,

PP, =0,,P, (C15)

and

Y Pi=1 (C16)

Proof C.5. Py are orthogonal and idempotent.

P;P; = (0;0])(9;9]) Eqn. (B12)
= ﬁi('f]j'&j)’l}; Associativity
= bi,0:0] oo, = 6,
= (52"ij Eqn. (014)

Proof C.6. P, form a complete set.
Let w = ¢;v; and consider

i
= cj'f;i'f);r’f;j Commutativity
= ¢jVidi o, = 6,
= ¢j0;
=w

J

The 2 x 2 Hermitian coherency matrix has two eigen-
values, A, = (So £ |S])/2, and can be expressed as a
spectral decomposition,

P:A0é0®é8+)\1é1®é{

_ _ (C17)
= >‘0 Po + /\1 P1s

where p, = e, ® éz correspond to purely polarized
states, as in Equation (24). That is, any partially po-
larized state can be represented as an incoherent su-
perposition of a pair of purely polarized states that are
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orthogonally polarized (é;r)él =0 and pyp; = 0). If the
signal is unpolarized, then the eigenvalues are equal and
any non-zero vector is an eigenvector. If p is purely po-
larized, then one of the eigenvalues equals zero, and the
polarization state is completely described by the Jones
vector associated with the non-zero eigenvalue.

In the natural basis defined by R, the eigenvalues \,,
are equal to the variances of two uncorrelated signals
received by orthogonally polarized receptors described
by the Hermitian transposes of the eigenvectors. In this
basis, the total intensity, So = Ag + A1; the polarized
intensity, S1 = |S| = Ao — A1; and Sy = S3 = 0. That
is, R rotates the basis such that the polarization vector
points along S7. In this basis, it is clear that the degree
of polarization

p= 8l _ oA (C18)
o AotA

is equal to zero when the intensities of the orthogonal

modes are equal (A9 = A1); in contrast, p = 1 when the

signal consists of a single purely polarized mode (one of

the eigenvalues is zero).

C.4. Auxis-angle Representation

Equations (59) and (60) are defined using the matrix
exponential, which is given by the power series,
exp(A) = . (C19)

=
k=1

Here, A* is the k" power of A; A° = I, where I is
the identity matrix with the dimensions of A; and k!
is the factorial of k. If A is normal, then its spectral
decomposition (Equs. [C13] and [C14]),

A = \Py, (C20)

such that
A" = (\p)"Py. (C21)

Proof C.7. Using induction, start with the base
case and apply Equation (C16) to yield

A" =(\)"Pp =) Pp=1
k

If A™ = ()\k)nPk, then

A’n,+1 — AAn
= (A P;) (Ak)"Pr)
= Xj(Ae)" 0k Py Eqn. (C15)
= (Ae)" "' Py O

Substitute Equation (C21) into Equation (C19) to yield

exp(A) = (Z ()\]i')n> P; = exp(\;)P;. (C22)

k=1

To arrive at Equations (59) and (60), consider the
eigenvalues of A = a - o, which must satisfy

A - M| =la-a—\og| =N —|a]*=0. (C23)
That is, there are two eigenvalues given by A = +|a|.
Let a = |a| and @ = a/a, and use the spectral decom-
position,
A= CI,PO - aPl, (024)
to show that
Py+Pi=09 and Py—P;=a-0; (C25)
therefore
22 _ exp(a)Py + exp(—a)P;
= cosh(a)(Po + P1) + sinh(a)(Py — P1) (C26)
= cosh(a)og + sinh(a)a - o.

Setting @ = Brn in Equation (C26) yields the axis-angle
representation of Hermitian matrices (Eqn. 59); likewise,
setting @ = i¢n yields the axis-angle representation of
unitary matrices (Eqn. 60).

C.5. Congruence Figenmatrices

The unit vector in the axis-angle representation of
a matrix defines an axis of symmetry in the three-
dimensional space of the Stokes polarization vector.
This symmetry axis can be exploited to rearrange and
simplify matrix equations and identify degenerate sys-
tems of equations (as in Appendix B of van Straten 2004,
and Appendix I.1 of this paper). For example, two ma-
trices commute when their symmetry axes are collinear
(parallel or anti-parallel).

Proof C.8. Given
A=a0¢p+a-0 and B=boyg+b: o,

Equation (C7) shows that AB = BA if and only
ifaxb=0.

J

Furthermore, if A and B commute, then they have
common eigenvectors.

N\

Proof C.9. If AB = BA and Av = A\v, then
ABv = BAv = ABw.

That is, B is an eigenvector of A with the same
eigenvalue \; therefore, Bv = pw.
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The coherency matrix has an axis of symmetry defined
by its associated Stokes polarization vector, which facil-
itates the identification of the eigenmatrices of a con-
gruence transformation. A matrix p is a congruence
eigenmatrix of an invertible matrix J with real-valued
congruence eigenvalue k if it satisfies the relation

Jpd' = kp. (C27)

The eigenvectors of a Jones matrix define the singular
congruence eigenmatrices of that Jones matrix.

Proof C.10. If Je = Ae, where A\ € C, then
JpJ=JewelJt Eqn. (24)
=Je®(Je)!  (AB)! =BTAT
=le® \el
= \*p p=exel
= Kkp k=|\?€R

Accordingly, a Jones matrix has two congruence eigen-
matrices.” Conversely, if a singular coherency matrix
p =e®el is a congruence eigenmatrix of J, then e is
an eigenvector of J.

Proof C.11. If p = e®e! and JpJt = kp, then
J (e®eT) JT=Je® (Je)l =ke®el,

and Je and e must be collinear; i.e., Je = )e,
where |2 = k.

\.

Furthermore, if p = e ® ef commutes with J, then p is
a congruence eigenmatrix of J.

7

Proof C.12. If Jp = pJ, then p and J have a
common eigenvector (Proof C.9). Therefore,

Je=)\e

where e is the only eigenvector of p = e ® ef,
and (via Proof C.10)

JpIt =kp,

where x = |A|2.

7 Although the Mueller matrix associated with J has four eigen-
vectors, only two of these describe physical polarization states.
For example, two of the eigenvectors of a rotation are complex-
valued. Two of the eigenvectors of a Lorentz boost have polar-
ization vectors that lie in the plane that is normal to the boost
axis; however, these have Sy = 0, which is not physical.

Finally, if J is a normal matrix and p is a congruence
eigenmatrix of J, then p commutes with J.

Proof C.13. If J is normal, p = e ® el and
JpJ' = kp, then Je = e (Proof C.11) and

Jp=Jexe =xe®el =\p.
Also
pl=exell
=e® (J‘Le)Jr

—e® (M\e)
=lexel

Proof C.2

Therefore, Jp = pJ.

J

In conclusion, if J is normal, then p is a congruence
eigenmatrix of J if and only if p commutes with J. Both
unitary and Hermitian matrices are normal and their
congruence eigenmatrices are explored in the following
sections.

C.5.1.  Unitary Matrices
If p commutes with Rp(¢), then

R (0) pRL(0) = pRa(O)RL(0) = p;  (C28)

that is, p is a congruence eigenmatrix of Ry (¢) with
associated congruence eigenvalue equal to unity. Con-
versely, if p is a congruence eigenmatrix of Ry (¢), then

¢) = kpRa(9) (C29)

and p commutes with Ry (¢) if £ = 1. The congruence

eigenmatrices of a unitary matrix share a single degener-
ate congruence eigenvalue, k = 1; therefore, any linear
combination of the congruence eigenmatrices is also a
congruence eigenmatrix of the transformation. Consid-
ering the equivalent three-dimensional rotation of the
Stokes polarization vector S; any vector that lies along
the axis of rotation remains unchanged by that rotation,
including S = 0 (unpolarized radiation).

C.5.2.  Hermitian Matrices
Define b = cosh 8 and b = m sinh 5 such that

Bu(8) =bog+b-o. (C30)
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Furthermore, define p = (Sp00+ 8- o) /2, and note
that [8] = 3¢ because p is singular / purely polarized.
If p and By, (8) commute, then their axes of symmetry
are collinear; i.e.,

m x s =0,
m - 8 = +[3| = £5, (C31)
m=+3/5

Using Equation (C7),

B (8)p = (bS50 +b- 8)o0/2 + (b3 + Sob) - o /2
= (b30 % |blSo)o0/2 + (b3 * [b]3) - /2
= (b= bl)S0o0/2+ (b [b])5 -0 /2
— (b )P
= (cosh 8 £ sinh 8)p
=etPp.
(C32)
Therefore,
B (8) pBL,(8) = B (8) pBm(B)
=B, (0)p (C33)
= ei;ﬁp.

Hermitian matrices have two distinct congruence eigen-
values; k = €*? when the polarization vector 3 is parallel
to the boost axis m, and k = e~ 2# when & is anti-parallel
to ™. Therefore, only these two purely polarized states
are congruence eigenmatrices of the transformation.

C.6. Pure Mueller Matrices

Various authors (e.g., Barakat 1981; Simon 1982;
Cloude 1986) have considered the necessary and suffi-
cient conditions that must be satisfied by the elements
of a Mueller matrix for it to have an equivalent Jones
matrix representation. Simon (1982) and Cloude (1986)
present the most intuitive geometric constraints on a
pure Mueller matrix based on its equivalent target co-
herency matrix (Cloude 1986).

For a Jones matrix J, the equivalent 4 x 4 Hermitian
target coherency matrix N is defined via the rank 4 ten-
sor N'=J ® JT, such that Equation (49) yields

L1
Ny = 5%u: Jedh):o
= %a#;.} (o, : 1) (C34)
1 *
= ik#ku'

Here, k, = o, : J are the components of a complex-
valued target four-vector k (Cloude 1986). Equa-

tion (C34) is equivalent to N = k ® ET/Q and, as noted

by Simon (1982), N is a scalar multiple of a projection
matrix, such that

N* = Tr [N] N. (C35)

Proof C.14. Define é k/|k| and the projec-

tion P = é ® Ef (Eqn. C14), such that
1 1 ~ ot 1
= — T = — 2 —
N= kokl = |kkok = kP
Note that

7 = kb, = 21 [,
Therefore, N = Tr [E] P and (via Eqn. C15)

N2 = Tr [N]°P? = Tr

(NP =Tr [N]N.

The mapping between any Mueller matrix M and its
associated target coherency matrix N exploits the sym-
metry of the transpose used to define the & operator
(Eqn. 45). Let T represent the transpose of covariant
tensor indeces, such that A®@B = T(A ® B) and, by
symmetry, A@ B = T (A ® B). Using this operator, the
rank 4 tensors associated with M and N are related by
U = T(N), where U is defined by Equation (50) and

N =TU)
=T (;Mﬁau ® Uu) (C36)

1.
§M,U,JH®O.V’

such that

v .
= ZM” 0,:0,0,0,

1
= ZM: Trlo.o000,].
Equation (C37) can be written as N = T : M where
T is the four-dimensional rank 4 tensor defined b

1
T = ZTY [oroor0,]. (C38)

By symmetry, M = 7 : N; that is, 7T is an involution.

As for the target coherency matrix derived from a Jones
matrix, N is Hermitian.
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Proof C.15.
A\ * AL * v\ *
(Nn> _(Tme) (Mp,)
M, eR

1 o
= ZM’Z‘/ Tro.0o,000,]

1 .
= ZM" Tr (a',QO'Hcr)\oy,)Jr Tr[A]" = Tr [Af]

1
= ZM’I: Tro,070,0.] AB' = BfAT
1 v
= ZM“ Tror0,0.0)] Tr [AB] = Tr [BA]
= N§ Eqn. (C37)

Just as the coherency matrix formed by the outer
product of a single Jones vector p = e ® &' corresponds
to a purely polarized state (see Eqn. C17), the target
coherency matrix formed by the outer product of a sin-
gle target vector N = E ® sz/2 corresponds to a pure
Mueller matrix. Therefore, a Mueller matrix is pure if
and only if its target coherency matrix, N = 7 :M satis-
fies Equation (C35). Cloude (1986) expressed this defi-
nition with the equivalent constraint that a pure Mueller
matrix is associated with a target coherency matrix that
has only one non-zero eigenvalue, A. Combined with its
associated eigenvector, k, the target vector k = A2k
can be used to compute (up to arbitrary phase) the
Jones matrix associated with a pure Mueller matrix,

C.7. Impure Mueller Matrices

Some polarimetric transformations are described by
impure Mueller matrices that cannot be represented by
a linear transformation of the electric field, as described
by a Jones matrix. For example, temporal or spectral
depolarization occurs when the response of a system
varies as a function of time or frequency on characteristic
scales that are smaller than the duration or bandwidth
over which the Stokes parameters are integrated. In this
case, the measured Stokes parameters,

' = (M(t.))S, (C40)
where the angle brackets represent integration over time
and/or frequency.

For example, consider stochastic Faraday rotation
that causes fluctuations in the position angle AV that
are normally distributed with zero mean and standard
deviation oy. The average Mueller matrix that de-

scribes the integrated Stokes parameters at a single radio
frequency,

(R, (2A0)) = 0 (cos2AT) —(sin 2AW) 0
7 0 (sin2A¥) (cos2AW) 0
1000
~10d00

00dO
0001

(C41)

where the angle brackets represent integration over time
and d = exp(—202) < 1 describes the depolarization of
Stokes Q and U. Note that this Mueller matrix is able
to depolarize a purely polarized state, something that
cannot be done by a linear transformation of the electric
field (Proof 4.3).

D. EXAMPLE TRANSFORMATIONS

This section demonstrates some basic transforma-
tions, starting with a source described by Stokes pa-
rameters

S = [S0.51,0,0]" (D1)
and coherency matrix

p:(5000+5101)/2. (DQ)

D.1. Ezample Boost
Consider a boost along 1 = (1,0,0)7,

B =B;(8) = o¢cosh + o1 sinh 3,

such that

p =BpBf
= SyBo¢B/2 + S1Bo1B/2.

Using Equation (61), the first term of this equation
includes

B;(8) o0 Bi(8) = B3(8) =Bi(28)  (D4)
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The second term includes

B;(8) o1 Bi(B)
= (g cosh 8 + o4 sinh 8) o1 (69 cosh 8 + o1 sinh 3)
= (g cosh 8 + o1 sinh B) (1 cosh 8 + o sinh )
= o1 cosh? 8 + o cosh Bsinh 3
+0sinh § cosh 8 + o sin? 8
=0 (cosh2 8 + sinh? ﬂ) + 0 (2sinh B cosh )
= o1 cosh 23 + o sinh 2.
(D5)

Therefore,

p' = SoBi(28)/2 + $1Bo B2
= Sp (g cosh2f + o7 sinh 23) /2
+8; (o1 cosh 28 + ogsinh 28) /2 (D6)
= o (Sp cosh 28 + S; sinh 23) /2
+0o1 (Sgsinh 25 + 57 cosh 23) /2

and

Sy =0¢:p = Spcosh23 + Sy sinh 23

b (D7)
S1=01:p = Spsinh 25 + 51 cosh 2.

That is, the Stokes parameters are boosted along the 1
axis with rapidity —2/ and Lorentz factor v = cosh 2.

D.2. Ezample Rotation

Consider a rotation about 2 = (0,1,0)7,

R =R;(x) = ogcosx + iogsiny,

such that

P =RpR'
=R (Soo0+ S, 01)RT/2 (D8)
= SoRooR'/2 + SR RT/2.

For the first term of this equation, note that rotations
have no effect on o; e.g.

(D9)

R, (¢) = Ra(—9), (D10)

the second term includes

Rs(x) o1 Ry(—x)
= (ogcosx + ioasiny) o (o cosx — iogsinx)

(gpcosx +ioasiny) (o1 cosy + ossiny)

o1 cos? x + a3 cos xsin x
+i(—io3)sin y cos x + i(ioy ) sin? x
=0 (cos2 X — sin? X) + 203 cos xsin x
= 01 c0s2x + o3sin 2y
(D11)

Therefore,
p =S000/2+ 51 (01082 +a3sin2y) /2 (D12)

and

S(/) =0y Ip/ = S()
S] =01:p = Sjcos2x (D13)
Sy =0o3:p' = Ssin2y.

That is, the total intensity is unchanged and the Stokes
polarization vector is rotated about the 2 axis by —2y.

D.3. Complex-valued Polarization Ellipse

This section demonstrates the relationship between
the geometry of the polarization ellipse (Eqns. [2]
through [4]) and the spherical coordinates of the Stokes
parameters (Eqn. 7) by deriving the analytic representa-
tion of a monochromatic electromagnetic wave (Eqn. 5).
First, consider

e(t) = egre' ™) (D14)

with polarization defined by the unit Jones vector &,
and associated Stokes polarization vector (see Eqn. 7),

S =72 (cos 2x cos 21, cos2x sin 21, sin2y). (D15)
As in Section 5.3.2, consider the transformation from

the original basis to one in which the second component
of the electric field vector is zero; i.e.,

e’(t) = Re(t) = ( (1) ) ret(Grvitd’) (D16)

Invert this using Equation (80), yielding

e(t) =R 'e"(t) = Rg(—v)Ry(x)e" (1), (D17)
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and compute the components of &g, starting with the
transformation of e’ (t) by Rs(x),

e'(t) = Ry(x)e”(t) = (a0 cos x +ioasinx) e”(t)

1 0 (0 1) . 1
= cosx +1 siny| e’ (¢
_ [ cosx isiny 1 i (2Tt+d)
7sin x cos Y 0
_ COS X rei@mutte)
7sinx
The real part of this analytic signal,

€)= r cos x cos(2nvt + ¢) (D19)
~\ —rsinysin@rvt +¢) |

(D18)

The polarization state of the wave is independent of
the absolute phase ¢’'; therefore, choose ¢/ = ¢ — 7/2 to
arrive at Equation (4). Then transform e’ by Rz(—v)
to arrive at Equation (5), -

e(t)=Rg(—¢)e'(t)

=(ogcostp —iogsiny) e (t)

1 Y eosw—i (O T sinw| e
(o 1) et e

_ [ cos P —siny COSX | i(2mutte))
siny cosy isin y

[ costpcosy —isintpsiny p et (2Tt e)
sin 1 cos x + % cos ¥ sin x
2rvttd), (D20)

=epe’l

where ey = rég as in Equation (6).

This result can be verified by demonstrating that the
equivalent congruence transformation of the coherency
matrix

p=R3(—V)R3(x)p "Ry (—X)R3(¥), (D21)
yields the original polarization vector S. Starting with

p' = (o0 +01)7°/2, (D22)

expand the rotations from the inside outward. Note
that rotation of a S; polarized state about the Sy axis
has already been derived in Equation (D11), where it is
shown that

R5(x) 01 Rs(—X) = o1 cos2x +o3sin2x.  (D23)

As detailed in Appendix C.5.1, the o3 basis matrix
is a congruence eigenmatrix of any rotation about the
S3 axis; therefore, it is necessary to consider only the
transformation of the oy basis matrix,

R3(—¢) o1 R3(¢)

= (ogcosty —iogsiny) o (o cosy) + iozsiny)
= (ogcost) —iogsiny) (o1 costh + i(—iog)siny)
=01 cos? ) + o5 costhsiny

—i(ioy) sine cos ) — i(—iory) sin
=01 (cos2 ¥ — sin? w) + 2075 cos 1 sin ¢
= 010821 + oy sin 2.

(D24)

Finally, expand Equation (D21)
p = R3(—¥)Rs(x)p"Rs(—x)R3 ()
= R3(—¥)R3(x) (00 + 1) Ry (—x)R3(¢) r*/2
= Rg(—’l/)) (0o + o1cos2x + o3sin2y) Ry (v) r2/2

3]

r

5 [o0 + (01 cos 2 + 5 sin 21)) cos 2x + o5 sin 2]
2
5 (o¢ + 01 cos 2 cos 21)
+05cos2xsin 2y + o3 sin 2),
(D25)

which is consistent with the polarization vector defined
in Equation (D15).

D.4. Transformation to a Circular Basis

Equation (82) is not the only way to represent a pair
of orthonormal circularly-polarized receptors; however,
it is the only unimodular unitary matrix that effects
the desired cyclic permutation of S = (Q,U, V)T into

S = (V,Q,U)T for all values of @, U and V (assuming

the Stokes V sign convention of IEEE 1983). To see
this, consider the following three derivations of Equa-
tion (82), each of which provides a slightly different per-
spective.

D.4.1. Direct Derivation

As discussed in Section 3.4, for a left-hand circularly
polarized (LCP) wave, the phase of e, leads that of e,
by 90°. If the LCP wave is also 100% polarized, then

ey (t) = exp(im/2)e,(t) = teg(t), (D26)

which can be expressed as in Equation (12),

er(t) = (1) 2 (t). (D27)
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For RCP, the phase of e, lags that of e, by 90° and

1

er(t) = ( ) > 2 (). (D28)
—i

Unit receptors that have maximal response to LCP and

RCP are given by the normalized Hermitian transposes

of the Jones vectors in Equations (D27) and (D28); i.e.,

. 1 . ) 1 .
L= 7 (1, =) and 7g= 7 (1,4). (D29)

The unitary matrix comprised of these row vectors,

ip\ 1 (1 i
()50 o

has a determinant of i, and normalizing by /i yields
the unimodular unitary matrix shown in Equation (82).
This transformation effects the desired cyclic permuta-
tion of the Stokes parameters.

D.4.2. Indirect Derivation

Either row vector in Equation (D29) can be multiplied
by an arbitrary phase and the pair would continue to be
orthonormal. For example, it would be equally reason-
able to start with a more symmetric pair of equations,

=7 = —= (1, —i) (D31)

and
P = —itr = —= (—i, 1). (D32)

The unitary matrix comprised of these orthonormal row
vectors,

7 1 (1 —i
Ro=|("l)=—
¢ (j'R) \@(—i 1 ) (D33)

= —=(0¢ —io2) = Ry(—7/4),

V2

rotates the polarization vector S = (Q,U, V)T around
the Sy axis by 90°, yielding " = (V,U, -Q)*.

To arrive at the desired cyclic permutation, note that
a 90° rotation about the S axis transforms (V, U, —Q)T
into (V,Q,U)T. Therefore,

R, = Ri(—ﬂ/4)R2(—7T/4) (D34)
(et 0 N1 1 =i
B 0 e/t ) V2\ —i 1
V=i f10 I =i\ _ 1 (1 -
V2 N0 —i 1) V2i\1 i )’

D.4.3. Geometric Derivation

Rather than starting with the electric field, consider
the three-dimensional rotation of the Stokes polarization
vector that effects the desired cyclic permutation. The
eigenvectors of this rotation lie on the axis defined by
Q = U = V; therefore, choose n = (1,1,1)T/y/3 and
note that a 120° rotation about this axis rotates Stokes
V into S7, Stokes @ into S}, and Stokes U into S%. The
equivalent unitary transformation of the electric field,

3
1 ,
Ry, =Ruy(—7/3) = 3 (a'o —zZak>
k=1
110 —(1414)
2\ 1—-4d 1+
1 ef’iﬂ'/4 767;71-/4
*\7@ e—im/4  gir/4
1 (1
V2i\1 i )

E. STOKES PARAMETERS AS INTENSITY
DIFFERENCES

Currently, at frequencies above the microwave region
of the electromagnetic spectrum, it is not possible to di-
rectly sample the electric field and therefore not possible
to simultaneously compute all four Stokes parameters
as in Equations (17) through (20). Rather, only Sy and
S1 can be directly measured because they are the sums
and differences of the flux densities (or intensities) of
the radiation after passing through oppositely polarized
filters.

In the basis defined by the Cartesian coordinates in-
troduced in Section 2, the Stokes polarization vector
S, =(Q,U,V)T, and Equation (18) yields

(D35)

S1 = |6x‘2_|€y|2:lm_ly =Q, (E1)

where I, and I, are the intensities of the electromag-

netic radiation after passing through a linearly polarized
filter with its transmission axis oriented along the x and
y axes, respectively.

In a basis that is formed by rotating the original basis
by 45° around the line of sight (e.g., the ' and y" axes of
Section 2 when ¢ = 7 /4), the Stokes polarization vector
S, = (U,—-Q,V)T and Equation (18) yields

xT

Sp=leL)? — || =1, — I, = U, (E2)

where I; and I, are the intensities measured after pass-
ing through a linearly polarized filter with its transmis-
sion axis oriented along the =’ and 3’ axes, respectively.
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In a basis defined by receptors with orthogonal senses
of circular polarization, as discussed in Section 5.4.1, the
Stokes polarization vector S, = (V,Q,U)?, and Equa-
tion (18) yields

S¢=lel? —le)* =01, =V, (E3)

where I; and I,. are the intensities after passing through
filters that pass left and right circularly polarized radi-
ation, respectively.

In all three cases, the total intensity Sy is given by
the sum of the intensities of the orthogonal polariza-
tions, which is independent of the basis in which it is
measured. By measuring the six intensities that appear
in Equations (E1) through (E3), which correspond to
the six special cases plotted in Figure 3, all four Stokes
parameters can be measured.

F. REFINEMENTS TO EXISTING DEFINITIONS

This article introduces some minor refinements and
corrections to existing definitions that enhance their
clarity and accuracy. First, in Stokes (1852), the el-
lipticity angle x varies between —90° and 90°, as in-
ferred from “the numerical value of [x] being supposed
not to lie beyond the limits 0 and 90°” and “polariza-
tion is right-handed or left-handed according to the sign
of [x]” (The “numerical value” is understood to mean
the “absolute value.”) However, as noted in Section 7.3,
allowing |x| > 45° leads to model degeneracy; therefore
|x| < 45° in this work.

The IEEE (1983) standard defines the axial ratio r/
as the “ratio of the magjor to minor axes of a polariza-
tion ellipse” that “carries a sign that is taken as plus
if the sense of polarization is right-handed and minus if
it is left-handed.” The caption to Figure 1 of this arti-
cle defines a ratio between semi-minor and semi-major
axis 7 = tany = —1/r’ that is positive for left-handed
polarization. The sign of 7’ is negated and, relative to
r, it is effectively inverted in the IEEE (1983) defini-
tion of the Poincaré sphere, where “the latitude is twice
the angle whose cotangent is the negative of the axial
ratio of the polarization ellipse.” That is, the latitude,
2x' = —2cot™ !’ = 2tan~! r = 2y; therefore, this arti-
cle and the IEEE standard arrive at mutually consistent
definitions of latitude in the Poincaré sphere. However,
though only briefly mentioned in this article, the ratio
r is preferred because it does not approach infinity for
any polarized states and it requires no negation when it
is related to latitude in the Poincaré sphere.

When defining the axis-angle representations of uni-
tary and Hermitian matrices, Britton (2000) wrote that
unitary transformations rotate the Stokes polarization
vector about i by 2¢, and Hermitian transformations

boost the Stokes four-vector along mm by 25. These def-
initions describe the inverses of the transformations de-
fined in this article and verified in Appendix D.

G. DOWN-CONVERSION

By the Nyquist Theorem, a signal must be discretely
sampled at a rate equal to twice its bandwidth in order
to completely represent its information content. There-
fore, subject to the finite recording rate of digital ob-
servatory equipment, a radio astronomical signal must
be constrained to a limited portion of the radio spec-
trum. The intermediate process by which the signal
from the receiver is band-limited and made ready for
discrete sampling is known as down-conversion.

Consider the incoming radio signal, z(t), and its
Fourier transform, X(v). The band-limited signal of
interest, x;(t), is parameterized by its centre frequency,
vy, and bandwidth, Av. Baseband down-conversion is
the process by which the spectral information originally
contained in the range [vg — Av/2, vg + Ar/2] is shifted
down to [0, Av].

The spectral information is shifted to baseband by
demodulating or mixing the radio frequencies (RF) with
a local oscillator (LO). This is equivalent to multiplying
the signal, z(t), with a pure tone, [(t) = a cos(2my;t+ ).
By application of the convolution theorem, and with
reference to Table 2, mixing may also be understood
as a convolution with a pair of complex-valued delta
functions in the frequency domain. This understanding
proves useful in the following sections.

In addition to mixing to lower frequencies, the sig-
nal must also be band-limited before analog-to-digital
conversion. Otherwise, power from frequencies higher
than the Nyquist frequency will be reflected back into
the band of interest, a pollution known as aliasing. The
ideal low-pass filter is represented by the rectangle func-
tion (see Table 2) so that a bandpass filter with centre
frequency, vy, and bandwidth, Av, is given by

I ('”Zj””) . (G1)

Note that the absolute value of v in the first term of this

equation creates a bandpass window at both positive
and negative frequency values.

Down-conversion therefore refers to the combined op-
eration of mixing and band-limiting. The following
two subsections describe in detail two commonly used
methods of down-conversion: single-sideband (SSB) and
dual-sideband (DSB). These are also represented graph-
ically in Figures 6 through 8. The process of down-
conversion is performed separately and (ideally) identi-
cally on each of the two orthogonal senses of polarization
from the receiver feed.
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G.1. Single-sideband Down-conversion

During single-sideband down-conversion (SSB), the
signal of interest, x(t), is first bandpass filtered, produc-
ing x(t) where Xp(v) = X(v)II((|v| — vo)/Av). The
band-limited signal is then mixed with a LO with
frequency, vq, producing x,,(t) = zp(t) cos(2mvit + ),
where vy is set to either vy — Av/2 (upper-sideband,
shown in Figure 6), producing x,(t); or vy + Av/2
(lower-sideband, shown in Figure 7), producing a;(t).
After another stage of low-pass filtering, either x,(t)
or z;(t) is digitally sampled at the Nyquist rate, 2Av.
Compared to x,(t), the two halves of the spectrum in
x;(t) are swapped, which is equivalent to negating the
direction on the frequency axis and taking the complex
conjugate of the spectrum.

During playback, the analytic signal associated with
x(t) may be formed in practice by taking the real-
to-complex Fast Fourier Transform (FFT), followed
by the complex-to-complex inverse FFT. Most real-
to-complex FFT implementations automatically omit
the redundant negative frequencies (X (—v) = X*(v))
from their output, implicitly producing the analytic sig-
nal. Since many signal processing operations (such as
phase-coherent dispersion removal) are performed in the
Fourier domain, the cost of calculating the analytic sig-
nal is transparent.

G.2. Dual-sideband Down-conversion

During dual-sideband down-conversion (DSB, see Fig-
ure 8), also known as quadrature mixing, the voltages
from the receiver are split equally into two signal paths.
One signal is mixed with a local oscillator, producing

i(t) = x(t) cos(2mrpt). (G2)

The other signal is mixed with the same local oscillator
phase-shifted by 90°,

q(t) = x(t) sin(2wvpt). (G3)

Both i(t) and ¢(t) are low-pass filtered with a cutoff fre-
quency of v, = Av/2, producing i,(t) = i(t)*sinc(w Avt)
and gp(t) = ¢(t) * sinc(rAvt). The low-pass filtered sig-
nals are then digitally sampled at the Nyquist rate of
2v. = Av. The signals, 44(t) and ¢,(t) are known as
the in-phase and quadrature components, respectively,
of z(t) with respect to vy.

During playback, the analytic signal associated with
x(t) is given by

Zb(t) = ib(t) + iqb(t)
= [x(¢) cos(2mot) + ix(t) sin(2mvpt)] * sinc(mAv)
= [z(t)e®™ 0! x sinc(rAvt). (G4)

Figure 6. Upper-sideband down-conversion. From the top,
the real-valued signal, z(t) has a complex-valued spectrum
with conjugate symmetry, such that X(—v) = X*(v), as
depicted by Re[X ()] in blue and Im[X ()] in red. The signal
is bandpass filtered and the band-limited signal, X;(v), is
mixed with a local oscillator with frequency vo — Av/2, as
depicted by a pair of blue delta functions. The resulting
signal, X, (v), is low-pass filtered, producing X, (v). For
each spectrum, the frequency axis is drawn in black, and the
real and imaginary parts of each complex value are projected
along the blue and red axes (respectively) depicted at the
origin (where v = 0).

In the Fourier domain,
Zy(v) = X(v +vo)l(v/Av). (Gb)

That is, the spectrum of z,(t) is equivalent to the band-

limited portion of z(t) centred at vy. The negative
frequency components, centred at —vg, have been sup-
pressed by low-pass filtering, forming the analytic signal
associated with z(t).

Note that changing the sign of the 90° phase shift in
Equation (G3) changes the sign of ¢(¢), which results in
complex conjugation of z,(t). This is equivalent to mod-
ulating x(t) with a local oscillator that has frequency
—1p, which shifts the negative half of the spectrum of
X (v) to baseband. As in the case of lower-sideband
down-conversion, the resulting spectrum is complex con-
jugated and the frequency axis is negated.

During SSB down-conversion, bandpass filtering is
performed before mixing, necessitating a filter that is
tunable over the range of frequencies of interest. In con-
trast, the low-pass filter used for DSB down-conversion
remains constant regardless of the desired observing fre-
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Xi(v)

X[(l/)

R

Figure 7. Lower-sideband down-conversion. As for up-
per-sideband except the band-limited signal, X;(v), is mixed
with a local oscillator with frequency vo + Av/2. The result-
ing signal, X,,(v), is low-pass filtered, producing X;(v).

quency. For this reason, DSB is often the more econom-
ical means of down-conversion.

G.3. Nyquist Zones

In the examples so far, the down-converted signal was
placed in the first Nyquist zone, which spans from —Av
to Av in the case of single-sideband down-conversion,
and from —Av/2 to Av/2 for dual-sideband down-
conversion. The process of discretely sampling the ana-
log signal x(¢) at uniformly-spaced instances in time is
equivalent to convolving the band-limited spectrum with
an infinite series of delta functions separated by the sam-
pling frequency. An example of sampling an analog sig-
nal after upper-sideband down-conversion to the first
Nyquist zone is depicted in Figure 9.

It is also possible to place the down-converted and
band-limited analog signal in a region of spectrum off-
set from the first Nyquist zone. If the spectrum is offset
by NAv, where N is an integer, then the spectrum is
said to be placed in the (N + 1)*® Nyquist zone, and
the digitized signal will have frequencies that either in-
crease or decrease linearly across the spectrum. An ex-
ample of sampling an analog signal after upper-sideband
down-conversion to the second (N = 1) Nyquist zone is
depicted in Figure 10. With respect to the digitized
signal depicted in Figure 9, the digitized signal in Fig-
ure 10 is shifted by Av, which is equivalent to what
would be obtained by digitizing an analog signal af-

%%

4ok

Z},(V)

S

Figure 8. Dual-sideband down-conversion (DSB). The re-
al-valued signal, X (v), is split before mixing with a local
oscillator with frequency vp (blue delta functions) and a 90°
phase-shifted local oscillator (red delta functions), yielding
the in-phase and quadrature components, I(v) and Q(v), re-
spectively. Each of the signals are low-pass filtered, yielding
Iy(v) and Qu(v) with bandwidth Av/2. The complex signal,
Zy(v)=Ip(v)+iQu(v), is the analytic signal associated with
Xu(v), which is depicted in Figure 6.

Figure 9. Down-conversion to the first Nyquist zone before
sampling. The band-limited analog signal, X, i(v) is de-
picted following upper-sideband down-conversion, along with
five of the infinite series of delta functions separated by the
sampling frequency. The digitized signal X%l(l/) is the con-
volution of the analog signal and the sampling function.



INTRODUCTION TO SINGLE-ANTENNA POLARIMETRY 41

XU’Q(V)

Figure 10. Down-conversion to the second Nyquist zone
before sampling. As for Figure 9, except that the analog sig-
nal has been down-converted to occupy the second Nyquist
zone before analog-to-digital conversion.

ter lower-sideband down-conversion to the first Nyquist
zone. That is, the spectrum is complex conjugated and
the frequency axis is negated.

H. REFLECTION AS TURNING OVER THE
RECEIVER

Reflection can also be modeled as turning over the
receiver, which is equivalent to rotating the reference
frame depicted in Figure 1 by 180° about a transverse
axis in the z-y plane. This negates the z axis and results
in a two-dimensional reflection in the x-y plane through
the rotation axis. Let @ = (cosa,sina,0)7 define the
three-dimensional rotation axis in the physical space of
Figure 1 and use Rodrigues’ Rotation Formula to ex-
press the 3 x 3 matrix for a 180° rotation about a.

2a2 -1 2aza, 0
2a,a, 2a2—-1 0 (H1)
0 0 -1

In the z-y plane, this transformation reduces to

cos2a  sin 2« .
W = ) =cos2a 0 +sin2a09,
sin 2a — cos 2«

(H2)
which is a linear combination of the two-dimensional
reflection basis matrices defined by the two real-valued
Pauli matrices.® A reflection in the z-y plane negates

8 Both o1 and o3 satisfy the criteria of a 2 x 2 reflection matrix,
which must be orthogonal (WW7T = WTW = o) and have
eigenvalues, A = 1, and determinant, |[W| = —1.

the handedness® of the two-dimensional basis, which can
also be reversed by swapping the cables used to propa-
gate the orthogonally polarized signals. In van Straten
et al. (2010), the feed hand defines the handedness of the
receptor basis and the reflection is performed through
the axis defined by the symmetry angle.

The polar decomposition of a two-dimensional re-
flection through the axis defined by (cosa,sina)
yields a wunitary matrix parameterized by n =
(cos 2a sin 2a, 0)7

W(a) = —i Ra(£7/2). (H3)

Proof H.1. Note that [W|'/? = +i and

W(a)

—iRﬁ(ﬂ/Q)
= - —+in-osin—
2 0'00082 7 g S D)

cos2a o1 + sin2a oq

J

Congruence transformation by W (a) rotates S by 180°
about the n axis defined by «, which negates both the
ellipticity angle x and the position angle .

In a basis defined by linearly-polarized receptors, the
nominal axis of symmetry has a position angle of 45°.
The reflection defined by W(m/4) = o2 swaps e, and e,,.
With reference to Equations (18) through (20), swap-
ping e, and e, negates Stokes Q and V. This negation
is equivalent to a £180° rotation of the Stokes polariza-
tion vector about o = (0, 1,0)7, which is also the result
of congruence transformation by W (w/4).

In the circular basis, the nominal axis of symmetry
has a position angle of 0°, and W(0) = o1 negates e,.
Negating either component of the electric field vector re-
verses the signs of both Stokes U and V, which is equiv-
alent to the +180° rotation of the Stokes polarization
vector about i = (1,0,0)” under congruence transfor-
mation by W(0).

I. FUNDAMENTAL NUMERICAL INSTABILITY

This section considers two forms of instability that
arise when fitting a mathematical model of the instru-
mental response to experimental data. First, model de-
generacy arises when there is no unique solution to the
measurement equation; in this case, the Hessian ma-
trix is singular and matrix inversion fails. Second, when

9 Strictly, handedness is a property of only three-dimensional
vector spaces; this property is formally known as the orienta-
tion of the ordered basis.
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one or more model parameters are highly collinear, the
Hessian matrix is ill-conditioned, matrix inversion is nu-
merically unstable, and the uncertainties of the collinear
model parameters are inflated.

The model under consideration relates the observed
Stokes parameters S S’ to the unknown Stokes parameters
S intrinsic to the source by a Mueller matrix M that
describes the unknown instrumental response via

S§'(X;a)=MXS. (I1)

In this measurement equation, X is the known con-
straining transformation, or matrix argument, and o

is the set of model parameters that describe both M
and S. The matrix argument X can be the projec-

tion between the receptors and the celestial sphere (Sec-
tion 5.5), which can vary with time owing to the rota-
tion of the Earth or mechanical rotation of the feed horn.
Faraday rotation (Section 5.6) may also serve as the ma-
trix argument under the assumption that the intrinsic
Stokes parameters do not vary with radio frequency v,
or are a known function of v (e.g., Edwards & Stappers
2004).

Both forms of numerical instability arise when solving
Equation (I1) through variation of . Model degener-
acy occurs when unknown components of M commute
with X, and parameter collinearity arises when unknown
components of S are eigenvectors of X.

1.1. Commuting with the Matrixz Argument

Appendix B of van Straten (2004) proves that no
unique solution to the polarization measurement equa-
tion can be derived when only unknown sources are ob-
served at multiple parallactic angles. Here, the proof is
repeated and extended to include impure Mueller ma-
trices (Appendix C.7). Consider

S'=MR(®)S (12)

where R(®) represents a rotation about the line of sight
by the Eirallactic angle .

Given M and S that satisfy this equation for all ®, it
is possible to define a family of solutions, M =M U!
and S = U S, where U is any matrix that commutes
freely with R( ) for all values of ®, such that

§'=M R(@®)S,

Pure Mueller matrices that commute with R(®) in-
clude rotations about the Stokes V axis, and Lorentz

boosts along the Stokes V axis. Impure Mueller ma-
trices that commute with R(®) can be described using
equation (46) of Lu & Chipman (1996, hereafter LC96),

T
M =(' 2 (14)
=A EA MA

where P = (Py, P, Pg)T is the polarizance vector that
describes the conversion of total intensity to polarized
flux, [Po| < 1, 0 = (0,0,0)T, and M, is the 3 x 3
symmetric depolarizer matrix. This matrix can be diag-
onalized by a similarity transformation and written in

the form of equation (43) of LCY96,

M,=R"!

o O 2
o o O

0
0|R, lal[bf,]c| <1 (I5)
Cc

where R is a 3 x 3 rotation matrix. In this form, it can
be seen that M, commutes with R(®) if

e only Stokes V is polarized by PA; and/or
e R is a rotation about the Stokes V axis, and

— Stokes Q and U are equally depolarized by

M, and/or

— Stokes V is depolarized by M A

For linearly-polarized receptors, only Stokes V is polar-
ized if P, = (0,0,P3)". Furthermore, Stokes Q and
U are equally depolarized by M when a = b (as for
the case of stochastic Faraday rotatlon described in Ap-
pendix C.7).

Note that depolarization of Stokes V includes nega-
tion (¢ = —1) and, as described in Section 5.1, no linear
transformation of the electric field can negate the sign
of only Stokes V. For example, if the instrumental re-
sponse is modeled using Jones matrices, then negation of
Stokes V in the unknown S can be compensated only by
rotating the reference frame. However, a £180° rotation
that negates Stokes V must also negate the position an-
gle and derived quantities such as the Faraday rotation
measure. Therefore, the Stokes V sign ambiguity can be
eliminated by observing a source for which the sign of
the position angle and/or rotation measure is known.

Owing to commutation, there is no unique solution to
Equation (I2) and other constraints or assumptions must
be introduced to constrain the degenerate dof. Similar
degeneracy will arise whenever the experimental con-
straints include only observations of unknown sources
of radiation as a function of a matrix argument with a
fixed axis of symmetry.
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When modeling variations of the observed Stokes pa-
rameters as a function of a matrix argument with a vari-
able axis of symmetry, it is no longer possible for an un-
known component of M to commute with all values of
X, and the degeneracy is eliminated. However, as de-
scribed in the following section, even when the axis of
symmetry of X is variable, unknown model parameters
can be highly collinear and cause numerical instability.

1.2. FEigenvectors of the Matriz Argument

In some experiments, the observed Stokes parameters
are related to the intrinsic Stokes parameters by a mea-
surement equation that includes a matrix argument with
a variable axis of symmetry. Such a measurement equa-
tion may have no fundamental degeneracy; however,
collinearity between model parameters can arise when
one or more unknown components of the polarization
states used as constraints are eigenvectors of the matrix
argument.

For example, when observations are made over a wide
range of hour angles with a fixed dipole array, the geo-
metric projection transformation,

P~B, (I,mR(®), (16)

where B (I,m) approximates the foreshortening of
the projected receptors, a direction-dependent Lorentz
boost with variable axis of symmetry in the Q-U plane,
and R(®) models the rotation of the observatory about
the line of sight by the parallactic angle ®, a rotation
with fixed symmetry along the Stokes V axis. The pro-
jection has a symmetry axis that varies with time and
therefore there is no fundamental degeneracy.

However, the Stokes vector, V. = [0,0,0,V]” has a
polarization vector that is paralﬁ to the symmetry axis
of R and perpendicular to the symmetry axis of B,
Therefore, it is an eigenvector of P with assomated

eigenvalue A = 1; i.e.,
PV-V. (17)

Consequently, when the model parameters include un-
known circular polarization intrinsic to the sources used
as constraints, the Stokes V components are highly co-
variant with the unknown instrumental boost along the
Stokes V axis, B, (8), causing the Hessian matrix to be
ill-conditioned.

To demonstrate this, first consider the typical
Gauss—Newton approximation of the Hessian matrix H.
Here, second-order derivative terms are ignored and

H~2Y'T, (18)

where Y is the Jacobian matrix with elements defined
by the partial derivatives of the predicted Stokes param-
eters S;- with respect to the free model parameters «y,

p_ 95

T = Jay (19)

In principle, the row index j covers all observations of

all 4 Stokes parameters of all source states included as
constraints. However, for brevity, the observation index
will be ignored and S will loop over the four Stokes
parameters, such that j indexes only the source state
and S} € {I7,Q,UZ, V/}.

The Hessian is ill-conditioned if there is a high degree
of multicollinearity between the unknown model param-
eters, such that the gradient vector (or column of the Ja-
cobian) for a model parameter is (nearly) proportional
to a linear combination of the gradient vectors for a set
of other parameters.

To characterize the multicollinearity between model
parameters in the approximation of a fixed dipole array,
consider a simplified model of the observed Stokes pa-
rameters in which the unknown instrumental response
consists of only a Lorzentz boost along the Stokes V
axis. For the n'" source used as a constraint,

/ p—
S =B,(ARS,. (110)
The set of unknown model parameters include the boost
rapidity g and the Stokes parameters intrinsic to each
source. Let the model of the intrinsic Stokes parameters
for each source be decomposed as

é —§HL+S v (I11)

where S n,L = [Ina Qn, Un, O]T and én v [07 0,0, Vn]T
such that

S =B, (RS, +S,,). (112

With reference to Equation (D7), the partial derivatives
of é;l with respect to [ include only

or'. .

375 =2 (I;' sinh 28 + V; cosh 2ﬁ)

8V’ (1I13)
5 2 (I} cosh 28 + V; sinh 23) ,

where I is the total intensity of the 4 source after

passing through the projection transformation. Simi-
larly, the partial derivatives of é; with respect to V,,
include only

('91']’» )
a1 = Oin sinh 23
" (114)
ovj _
= 0jn cosh 28.

oV,
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To first order, the total intensity changes by only a
small fraction as the projection transformation varies.
For example, even when the differential gain is as large
as 2, v = In(2)/2 ~ 0.35 (Eqn. 69) and coshy ~ 1.06.
Therefore, assume that I/ ~ I, and consider the follow-
ing linear combination of V,, gradient vectors,

Ty => LYy, (115)
n

where Y, is the gradient vector defined by the column
of the Jacobian matrix corresponding to V,,. The vector
Yy has components,

oS’ 05’
Ty, = ZI"TVi = jaT/j_ (116)

and its inner product with the gradient vector for (3,

Similarly,

RALRED IR (119)

and

Xs® =4 [(IF +VHXB) + LYY (8)]  (120)

For small 8, X(B) ~ 1 and Y (B) ~ 2p. If V}/I; is also
small, then (to first order) terms involving Vf and SV;

can be ignored, and the cosine similarity between Yy
and Yg,

05’ 98",
_ J 77 2
J (117) TviXsl  (or2)z (ax12)2
2 J J
~ 23 [FX(8) + VY (8)]
J
Owing to the high multicollinearity between V;, and S,
where the Hessian matrix is poorly-conditioned, its inversion
X(B) = sinh? 23 + cosh? 283 is numerically unstable, and the formal uncertainties of
. (I18) B and V,, are inflated.
Y (8) = sinh 28 cosh 2.
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