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ABSTRACT

A statistical framework is presented for the study of the orthogonally polarized modes of radio pulsar

emission via the covariances between the Stokes parameters. To accommodate the typically heavy-
tailed distributions of single-pulse radio flux density, the fourth-order joint cumulants of the electric

field are used to describe the superposition of modes with arbitrary probability distributions. The

framework is used to consider the distinction between superposed and disjoint modes with particular

attention to the effects of integration over finite samples. If the interval over which the polarization
state is estimated is longer than the timescale for switching between two or more disjoint modes of

emission, then the modes are unresolved by the instrument. The resulting composite sample mean

exhibits properties that have been attributed to mode superposition, such as depolarization. Because
the distinction between disjoint modes and a composite sample of unresolved disjoint modes depends

on the temporal resolution of the observing instrumentation, the arguments in favour of superposed

modes of pulsar emission are revisited and observational evidence for disjoint modes is described.
In principle, the four-dimensional covariance matrix that describes the distribution of sample mean

Stokes parameters can be used to distinguish between disjoint modes, superposed modes, and a

composite sample of unresolved disjoint modes. More comprehensive and conclusive interpretation of

the covariance matrix requires more detailed consideration of various relevant phenomena, including
temporally correlated subpulse modulation (e.g. jitter), statistical dependence between modes (e.g.

covariant intensities and partial coherence), and multipath propagation effects (e.g. scintillation and

scattering). Unpublished supplementary material is appended after the bibliography.

Keywords: methods: data analysis — methods: statistical — polarization — pulsars: general —
techniques: polarimetric

1. INTRODUCTION

The higher-order statistics of electromagnetic radi-

ation have long been used to discover and study ra-
dio pulsars. The fluctuation power spectrum is em-

ployed to detect periodic signals in pulsar survey data

willem.van.straten@aut.ac.nz

(e.g. Burns & Clark 1969; Ransom et al. 2002); the

longitude-resolved modulation index is used to study

the radio pulsar emission mechanism (e.g. Taylor et al.

1975; Krishnamohan & Downs 1983; Jenet & Gil 2003;
Weltevrede et al. 2007); correlated and periodic struc-

ture in the variability of pulsar signals, such as drift-

ing subpulses, are detected and studied using longitude
resolved and two-dimensional fluctuation spectra (e.g.

Backer 1970; Edwards & Stappers 2002); and the sec-

mailto:willem.van.straten@aut.ac.nz


2 van Straten & Tiburzi

ondary dynamic spectrum reveals information about the

turbulent structure of the ionized interstellar medium

along the pulsar line of sight (e.g. Stinebring et al. 2001;

Walker et al. 2004; Cordes et al. 2006). All of the above
quantities involve fourth-order moments of the electric

field that characterize variability in the flux density of

the pulsar signal.
The fourth moments of the electric field have also

been used to study variability in the polarization

of pulsar radiation. In many pulsars, over limited
ranges of pulsar longitude, the emission is observed

to switch between one of two orthogonally polarized

states, or modes (e.g. Ekers & Moffet 1969; Taylor et al.

1971; Manchester et al. 1975; Backer & Rankin 1980;
Stinebring et al. 1984). The degree of polarization

of the modes and the time scales for mode switch-

ing (e.g. microstructure and subpulse polarization fluc-
tuations) have been inferred from the autocorrelation

functions of the Stokes parameters (e.g. Cordes 1976;

Cordes & Hankins 1977; Cordes et al. 2004). In several
cases, the observed modes are not perfectly orthogonally

polarized (e.g. Backer & Rankin 1980; Stinebring et al.

1984; Gil et al. 1991; McKinnon 2003a) and surprising

annular distributions of single-pulse polarization states
on the surface of the Poincaré sphere have also been

observed, which may be indicative of stochastic gen-

eralized Faraday rotation in the pulsar magnetosphere
(Edwards & Stappers 2004).

Cordes et al. (1978), hereafter CRB, first proposed us-

ing the (non-central) second moments of the linearly po-
larized and total intensities to determine if the modes

are disjoint, such that only one mode is observed at a

given instant, or if the signal is an incoherent superposi-

tion of the two modes. CRB also argued that the high
degree of correlation between the handedness of circular

polarization and the position angle of the linearly po-

larized flux is further evidence of the mutual exclusivity
of the modes. However, this correlation is more simply

interpreted as evidence for the ellipticity of the modes

(e.g. Harding & Tademaru 1981; Allen & Melrose 1982;
Karastergiou et al. 2003).

Over the decades following CRB, several stud-

ies considered the distinction between disjoint

and superposed modes (e.g. Stinebring et al. 1984;
McKinnon & Stinebring 1998), and a wide variety

of statistical approaches to the study of orthogo-

nally polarized modes have been developed (e.g.
McKinnon & Stinebring 2000; McKinnon 2002, 2003b,

2006). Edwards & Stappers (2004) and McKinnon

(2004) independently introduced techniques based on
principal component analysis of the 3 × 3 covariance

matrix of the Stokes polarization vector with the

respective goals of characterizing the non-orthogonality

of the modes and testing the hypothesis that the

excess broadening of position angle histograms (first

noted by Stinebring et al. 1984) is due to additional

randomly polarized radiation. Influenced by these stud-

ies, van Straten (2009) analyzed the 4 × 4 covariance
matrix of the Stokes parameters and demonstrated that

additional randomly polarized radiation is not required.

Rather, the observed variance of the polarized flux is
consistent with the self noise intrinsic to the bright

pulsars on which single-pulse studies typically focus.

The statistical analysis presented by van Straten
(2009) is valid only when the components of the electric

field vector are normally distributed. However, pulsars

typically exhibit heavy-tailed (e.g. power-law and log-

normal) distributions of longitude-resolved single-pulse
flux density (e.g. Cairns et al. 2003; Os lowski et al.

2014). Therefore, one of the main aims of this paper

is to extend (and correct) the statistical framework of
van Straten (2009) so that it can be applied to non-

normal distributions.

As in van Straten (2009), the framework presented in
this paper differentiates between the statistics of the in-

stantaneous Stokes parameters, which are derived from

a single instance of the electric field, and the sample

mean Stokes parameters, which are computed by av-
eraging over a finite sample of instances of the elec-

tric field. The instantaneous Stokes parameters, also

known as the unaveraged or unsmoothed Stokes param-
eters, are typically encountered only when studying the

autocorrelation functions of the Stokes parameters as

a function of lag (e.g. Cordes 1976; Cordes & Hankins
1977; Cordes et al. 2004) or when presenting the po-

larization of giant pulses at the highest available time

resolution (e.g. Heiles et al. 1970; Cognard et al. 1996;

Hankins et al. 2003).1 The sample mean Stokes param-
eters are more commonly encountered in the study of

single pulses from radio pulsars, where the finite sam-

ples are defined by the evenly spaced intervals of pulsar
longitude, also known as phase bins, into which the sig-

nal is divided.

The distinction between instantaneous and sample
mean statistics reaffirms the fundamental importance

of instrumental resolution when studying orthogonally

polarized modes. Whereas instantaneous Stokes param-

eters admit only disjoint or superposed modes, the sam-
ple mean Stokes parameters may include statistical sam-

ples that are composed of a union of sub-samples drawn

from mutually exclusive populations. In other words,
after integration, disjoint modes may be unresolved by

1 See van Straten (2009) for a detailed discussion of the fun-
damental limitations and pitfalls associated with studying giant
pulse polarization via the instantaneous Stokes parameters, which
on their own have no statistically significant physical meaning.
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the instrument.

Observational evidence of disjoint modes is presented

by Cordes & Hankins (1977), who find that micropulse

structures on the shortest time scales are more polarized
than the longer time scale subpulse structures in which

they are embedded. They also observe that transitions

between orthogonally polarized modes preferentially oc-
cur on the edges of micropulses and conclude that the

variability of micropulse polarization depolarizes the sig-

nal when it is smoothed on a time scale greater than the
characteristic width of the micropulse structures. That

is, the signal is depolarized when the disjoint modes are

unresolved. As discussed in more detail in Appendix A,

similar evidence of unresolved disjoint modes is pre-
sented by Gangadhara et al. (1999), who demonstrate

that the degree of polarization of single-pulse observa-

tions is higher when the integration interval is shorter;
that is, at higher time resolution, the disjoint modes are

better resolved.

Integration over a sample that is composed of mu-
tually exclusive and orthogonally polarized sub-samples

depolarizes the resulting sample mean Stokes parame-

ters. This provides an alternative explanation for de-

polarization, which is more commonly interpreted as
evidence of mode superposition (e.g. Stinebring et al.

1984; McKinnon & Stinebring 1998; Karastergiou et al.

2011). Because the degree of polarization, and therefore
the previously proposed distinction between disjoint and

superposed modes, depends on the temporal resolution

of the instrument used to record the experimental data,
the observational evidence that has been presented in

support of superposed modes should be revisited.

Toward this end, and motivated by the additional in-

sights that can be gained through analysis of the four-
dimensional fourth-order moments of the electric field,

the primary aim of this paper is to further develop a

statistical framework for the study of orthogonally po-
larized modes via the covariances between the Stokes pa-

rameters. To date, studies of variability in the polarized

emission from pulsars have focused on sources bright
enough to be detected on every rotation. In contrast,

the approach described in this paper does not require

detection of individual pulses and can be applied to aver-

age pulse profiles of arbitrary integration length. There-
fore, the proposed framework can be employed to study

sources that are either insufficiently bright to be clearly

detected in single-pulse data or for which recording and
offline analysis of such data is prohibitively expensive,

which are some of the reasons why single-pulse stud-

ies of millisecond pulsar polarization are relatively rare
and recent (e.g. Os lowski et al. 2014; Liu et al. 2015).

Experiments based on statistical interpretation of mo-

ments should be less influenced by the idiosyncrasies of

the relatively few brightest (and more slowly spinning)

sources and thereby have the potential to enable more

statistically significant conclusions about the entire pul-

sar population.

Following a review of fourth-order statistics in Sec-
tion 1.1, some relevant linear algebra and the covari-

ances between the instantaneous Stokes parameters are

presented in Section 2. In Section 3, the covariances be-
tween the sample mean Stokes parameters are derived

for the following three distinct and idealized combina-

tions of statistical samples.

1. Disjoint samples : Every instance of the electric
field vector in a given sample is exclusively from

only one of the two modes of emission; i.e. the

disjoint modes are resolved by the instrument.

2. Superposed samples : Each instance of the electric
field vector is an incoherent sum of the electric

fields from the two modes.

3. Composite samples : Each sample is a union of
sub-samples of instances of the electric field vec-

tor from each of the two modes of emission; i.e. the

disjoint modes are unresolved by the instrument.

In Section 4, the results of this analysis are interpreted

with attention to the impact of various physical phe-
nomena, including amplitude modulation, partial mode

coherence, interstellar scintillation, and superposition of

signal and noise. The mathematical equations presented
throughout this paper are verified using a Monte Carlo

simulation that is described in the Appendix and the

results of this study are summarized and discussed in
Section 5.

1.1. Review of Fourth-Order Statistics

This section reviews definitions and concepts that are

relevant to the instantaneous Stokes parameters, begin-

ning with the fourth-order statistics of complex-valued
random scalar variables. One of the central mathemat-

ical results of this paper is derived using the cumulants

of a probability distribution, which are closely related
to its moments (e.g. Kendall et al. 1987). As demon-

strated in the following sections, the cumulants have an

important property that is not shared by the moments

of a distribution. For any two statistically independent
random variables, x and y, the cumulants of the sum

z = x + y are equal to the sums of the cumulants of

x and y. The moments and cumulants of a distribu-
tion are equal only up to third order and, to highlight

the fundamental differences between them, the follow-

ing section begins with a simple demonstration that the
fourth moment of a sum of two random variables is not

equal to the sum of their fourth moments. A definition

of the cumulants is then presented using a derivation
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that explains the origin of their additive property, which

is later exploited to study the fourth-order statistics of

superposed electromagnetic waves.

1.1.1. Complex-valued Random Scalars

The following example illustrates the utility of the
higher order cumulants of a distribution when studying

the superposition of electromagnetic waves. Consider a

complex-valued analytic signal z associated with a real-
valued random variable (e.g. Bracewell 1986). Such a

signal is an example of a complex circular scalar field,

defined as having statistically independent and identi-

cally distributed real and imaginary components, Re [z]
and Im [z] (e.g. Picinbono 1994). If Re [z] and Im [z]

are also normally distributed, then the instantaneous

intensity of this scalar field, ξ = z∗z, where z∗ is the
complex conjugate of z, is distributed as χ2 with two de-

grees of freedom (the exponential distribution). There-

fore the standard deviation of ξ is equal to its mean; i.e.
ςξ = 〈ξ〉, where the angular brackets denote the expec-

tation value, or population mean. (When averaged over

a sufficiently large number of instances, the population

mean and expectation value are equal.)
If z is an incoherent sum of two statistically indepen-

dent and normally-distributed complex circular scalar

fields, i.e. z = zA + zB , then 〈ξ〉 = 〈ξA〉 + 〈ξB〉, where
ξA = z∗AzA, ξB = z∗BzB , and

ς2ξ = 〈ξ〉2 = (〈ξA〉 + 〈ξB〉)2 = ς2A + ς2B + 2ςAςB , (1)

where ςA = 〈ξA〉 and ςB = 〈ξB〉 are the standard devia-

tions of the exponentially distributed intensities, ξA and

ξB respectively. This elementary result demonstrates
the fact that, when two statistically independent fields

are superposed, the variance of the intensity of the re-

sulting sum is not equal to the sum of the variances of
the intensities of the two fields. The variance of the in-

tensity ς2ξ = 〈ξ2〉 − 〈ξ〉2, where the second moment 〈ξ2〉
is equal to the fourth-order moment of z; therefore, this
example also demonstrates that the fourth-order mo-

ment of a sum of two random variables is not equal to

the sum of their fourth moments.

To derive a general expression for the variance of
the instantaneous intensity of superposed fields that

are not necessarily normally distributed, it is useful to

exploit the relationships between the higher-order mo-
ments and cumulants of random variables. Following
Amblard et al. (1996) and Eriksson et al. (2010), the

characteristic function of a complex-valued circular ran-
dom variable z is defined as

Φz(Z)≡〈exp (iRe [z∗Z])〉 (2)

≡
∫

eiRe[z∗Z]pz(z)dz (3)

where i =
√
−1, pz(z) is the probability density func-

tion of z, and Z is the Fourier conjugate of z. That is,

the above integral is equivalent to the two-dimensional

Fourier transform of pz(z) along the real and imaginary

components of z, for which the Fourier conjugate vari-
ables are the real and imaginary parts of Z, respectively.

The nth-order moment of z

µr;s(z) ≡ 〈zrz∗s〉 =

(

2

i

)r+s
∂r+sΦz

∂Zs∂Z∗r

∣

∣

∣

∣

∣

Z=0

, (4)

where r and s are positive integers such that r + s = n;
the above equation identifies the moments as the coef-

ficients in a power series expansion of the characteristic

function. For a given order n, there are n + 1 different
moments of a complex-valued random variable; however,

for a circular complex variate, the only non-zero mo-

ments are those for which r = s.

If z = zA + zB is the sum of two statistically inde-
pendent circular complex variates zA and zB , then the

probability density function of z is the convolution of

the probability density functions of zA and zB ; i.e.

pz(z) = pA(z) ∗ pB(z).

Furthermore, as the Fourier transform of the probability

density function, the characteristic function of z is the

product of the characteristic functions of zA and zB ; i.e.

Φz(Z) = ΦA(Z)ΦB(Z).

Finally, the natural logarithm of the characteristic func-

tion of z, known as the secondary characteristic function,

Ψz(Z) ≡ log [ΦZ(Z)] (5)

is simply the sum of the secondary characteristic func-
tions of zA and zB ; i.e.

Ψz(Z) = ΨA(Z) + ΨB(Z).

This important property is passed on to the cumulants,

which are the coefficients in a power series expansion of

the secondary characteristic function; i.e.

κr;s(z) ≡
(

2

i

)r+s
∂r+sΨz

∂Zs∂Z∗r

∣

∣

∣

∣

∣

Z=0

. (6)

Therefore, κr;s(z) = κr;s(zA) + κr;s(zB). Using the re-

lationship between the fourth-order cumulants and mo-
ments of circular complex variables (e.g. Mendel 1991;

Eriksson et al. 2010),

κ2;2(z) = µ2;2(z) − 2 [µ1;1(z)]
2

= ς2ξ − 〈ξ〉2,

it is trivial to show that

ς2ξ = ς2A + ς2B + 2〈ξA〉〈ξB〉. (7)

This general expression for the variance of the instan-

taneous intensity of a scalar field holds regardless of the

distribution of the circular complex variables zA and zB
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and, in the special case of normally distributed vari-

ates, it is consistent with Equation (1). Noting that

the variance of a random variable is related to its au-

tocorrelation function at zero lag, the above equation is
consistent with Equation 16 of Rickett (1975).2

1.1.2. Complex-valued Random Vectors

To study the statistics of the electric field vector re-
quires multivariate analysis and the most elegant math-

ematical descriptions of random vectors employ ten-

sor algebra (e.g. McCullagh 1987; Amblard et al. 1996;
Smirnov 2011). This is especially apparent when study-

ing higher-order moments, as alternative approaches

to multivariate analysis typically result in complicated

expressions that involve the Kronecker product, the
vectorization operator (which converts p × q matrices

into pq-dimensional vectors), and commutation (also

known as permutation) matrices; e.g. see Equation (50)
of Mendel (1991), Equation (2.17) of Sultan & Tracy

(1996), and Equation (2.1.53) of Kollo & von Rosen

(2005).
Following Amblard et al. (1996), the nth-order mo-

ments of the two-dimensional complex-valued transverse

electric field vector e are given by n+ 1 rank n tensors

defined by

µp;q(e) ≡ 〈e⊗p ⊗ e†⊗q〉, (8)

where p and q are positive integers, p+ q = n, e† is the

Hermitian transpose of e, ⊗ indicates the tensor prod-
uct, and e⊗p is the pth tensor power of e, which indicates

that e enters into the tensor product p times. (Defined

recursively, e⊗p+1 = e⊗p ⊗ e.) As in the previous sec-
tion, the nth-order tensor moments are related to the

characteristic function

Φe(E) ≡ 〈exp
(

iRe
[

e†E
])

〉 (9)

by

µp;q(e) =

(

2

i

)p+q

∇⊗q
E

⊗∇⊗p

E
†Φe

∣

∣

∣

∣

∣

E=0

, (10)

where e†E represents an inner product and ∇⊗q
E

is the

qth-order gradient with respect to E. Also as for scalar
fields, the secondary characteristic function

Ψe(E) ≡ log [Φe(E)] (11)

is used to define the nth-order tensor cumulants

κp;q(e) =

(

2

i

)p+q

∇⊗q
E

⊗∇⊗p

E
†Ψe

∣

∣

∣

∣

∣

E=0

. (12)

2 There is a typographical error in Equation 16 of Rickett
(1975); the third term on the right-hand side of this equation
should be 〈rx∗ (τ)〉〈rN (τ)〉.

The fourth-order cumulants are related to the fourth-

and second-order moments by (Cardoso 1991)3

κ2;2(e) = 〈r ⊗ r〉 − ρ⊗ ρ− ρ ⊗̃ρ, (13)

where r ≡ e⊗ e† is the instantaneous coherency matrix,

and

ρ ≡ µ1;1(e) = 〈r〉 (14)

defines the population mean coherency matrix that is

typically used to describe the polarization of electro-

magnetic radiation (Born & Wolf 1970). The ⊗̃ opera-
tor represents a tensor product followed by a transpose

over contravariant tensor indeces; i.e.

{A⊗B}jlik ≡A
j
iB

l
k (15)

{

A ⊗̃B
}jl

ik
≡Al

iB
j
k (16)

where A and B are rank 2 tensors (i.e. matrices). Ap-
pendix B describes some minor differences between the

index notation used in the above definitions and the con-

vention used by Cardoso (1991).
Equations (13) through (16) form the mathematical

basis from which the covariances between the Stokes pa-

rameters are derived in the following sections. First, the

above tensor products are transformed to be expressed
in terms of the Stokes parameters associated with ma-

trices A and B. These transformations are then used to

express Equation (13) in terms of the instantaneous and
population mean Stokes parameters of a single source of

radiation. Finally, in Section 3.2, these tensors are used

to derive the covariances between the Stokes parameters
in the case of superposed modes of emission represented

by A and B.

2. COVARIANCES BETWEEN THE
INSTANTANEOUS STOKES PARAMETERS

Although more elegant than its alternative represen-

tations, the complex-valued rank 4 tensor of cumulants
defined in Equation (13) is not immediately amenable

to interpretation. It remains to transform the equations

that describe fourth-order tensor products of the elec-
tric field vector into the equivalent objects that describe

second-order tensor products of the Stokes parameters.

This is achieved in the following sections by first iden-

tifying the isomorphism between rank 4 tensors in the
two-dimensional vector space of the electric field C

2
2;2

and rank 2 tensors in the four-dimensional vector space

of the Stokes parameters C
4
1;1.

3 Section 5.2 of Amblard et al. (1996) concludes with an incor-
rect expression for this relationship.
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2.1. Isomorphism between C
2
2;2 and C

4
1;1

The required mathematical mapping between fourth-

order products of e and second-order products of Stokes
parameters derives from the isomorphism between the

2×2 vector space of the coherency matrix and the four-

dimensional vector space of the Stokes parameters, as
expressed by the following pair of equations.

ρ=Sµ σµ/2 (17)

Sµ =σµ :ρ (18)

Here, Sµ are the four Stokes parameters, Einstein no-

tation is used to imply a sum over repeated indeces,

0 ≤ µ ≤ 3, σ0 is the 2× 2 identity matrix, σ1−3 are the
Pauli matrices, and the : operator represents tensor dou-

ble contraction, a tensor product followed by contraction

over two pairs of indeces. The double contraction of two

matrices A and B yields a scalar quantity defined by

A:B ≡ Aj
iB

i
j = Tr [AB] , (19)

where Tr is the matrix trace operator. Equation (17) ex-
presses the coherency matrix as a linear combination of

Hermitian basis matrices; Equation (18) represents the

Stokes parameters as the projections of the coherency

matrix onto the basis matrices. When ρ is Hermitian,
the Stokes parameters are real-valued.

Using Equations (17) and (18), any linear transforma-

tion of the coherency matrix ρ′ = L(ρ), can be expressed
as an equivalent linear transformation of the associated

Stokes parameters by the Mueller matrix M, as defined

by

S′
µ = Mν

µSν =
1

2
σµ :L(σν)Sν . (20)

If, for any positive-definite Hermitian matrix ρ, the re-

sult of the linear transformation L(ρ) is also positive-

definite and Hermitian, then L is called positive and its
associated Mueller matrix is real-valued. In general, the

Mueller matrix may be complex-valued.

Let LU(ρ) = U:ρ represent the linear transforma-
tion of ρ by a rank 4 tensor U with 2 covariant and 2

contravariant indeces, such that the double contraction

yields a matrix with components given by

{U:ρ}ji ≡ U jl
ikρ

k
l . (21)

Substitution of LU into Equation (20), followed by elim-

ination of Sν , associates with U a 4× 4 Mueller matrix,

Mν
µ =

1

2
σµ :U :σν . (22)

Likewise, for any 4× 4 Mueller matrix, there is an asso-
ciated rank 4 tensor,

U =
1

2
Mν

µσµ ⊗ σν . (23)

Equation (22) expresses the components of a Mueller

matrix as the double projections of a rank 4 tensor U

onto the Hermitian basis matrices. Equation (23) repre-

sents U as a linear combination of the 16 basis tensors
formed by all possible tensor products of the 4 Hermitian

basis matrices. Combined, these equations establish the

required isomorphism between C
2
2;2 and C

4
1;1. A similar

mapping between a Mueller matrix and its associated

target coherency matrix was derived by Cloude (1986)

using Kronecker products of the Hermitian basis matri-
ces and the matrix trace operator.

2.2. Tensor products of the Stokes parameters

Although Equations (22) and (23) are derived by
considering equivalent linear transformations of the co-

herency matrix and Stokes four-vector, they can be used

to map any object from C
2
2;2 to C

4
1;1 (and vice versa).

Bearing in mind the objective to convert Equation (13)

into an equivalent form that is expressed in terms of the

Stokes parameters, Equation (22) is first used to convert

the tensor products A ⊗ B ∈ C
2
2;2 and A ⊗̃B ∈ C

2
2;2

defined by Equations (15) and (16) into the equivalent

tensor products A ⊗ B ∈ C
4
1;1 and A ⊗̃B ∈ C

4
1;1, re-

spectively, where A and B are the Stokes parameters
associated with A and B. Setting either U = A⊗B or

U = A ⊗̃B in Equation (22), the following transforma-

tion properties (Cardoso 1991)

(A⊗B) :C=A (C:B) (24)
(

A ⊗̃B
)

:C=ACB (25)

are applied to yield

{M⊗ (A,B)}νµ =
1

2
(σµ :A) (σν :B) (26)

{

M⊗̃ (A,B)
}ν

µ
=

1

2
σµ : (Aσν B) (27)

Using Equation (18), Equation (26) is related to the

tensor product of the Stokes parameters; i.e.

A⊗B = 2M⊗ (A,B) (28)

where

{A⊗B}νµ ≡ AµBν . (29)

Similarly, as shown in Appendix C, Equation (27) yields

A ⊗̃B =
1

2
(A⊗B +B ⊗A− ηA ·B + i A ∧B) ,

(30)

where η is the Minkowski metric tensor with signature

(+,−,−,−),

A ·B ≡ ηµνAµBν = A0B0 −A · B (31)

is the covariant inner product of A and B, and A ∧ B
is the anti-symmetric covariant exterior product of the

Stokes parameters, defined in Equation (56).
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C2
1;1 × C2

1;1 C2
2;2

C4 × C4 C4
1;1

⊗

σ×σ σ⊗σ

⊗

Figure 1. Commutative diagram representing the linear and
bilinear mappings between the vector spaces used in this
work. In this diagram, C2

1;1 represents the vector space of
two-dimensional rank 2 tensors such as the coherency ma-
trix and C

4 represents the vector space of four-dimensional
vectors such as the Stokes parameters. The linear map σ rep-
resents the isomorphism between these vector spaces as em-
bodied in Equations (17) and (18). In the top row, C2

1;1×C
2
1;1

represents a Cartesian product, the vector space of ordered
pairs (A,B) where A ∈ C

2
1;1 and B ∈ C

2
1;1; the tensor prod-

uct defined by Equation (15) maps these ordered pairs into
rank four tensors A⊗B ∈ C

2
2;2. Similarly, in the bottom row,

C
4 × C

4 represents the vector space of ordered pairs (A,B)
where A ∈ C

4 and B ∈ C
4; the tensor product defined by

Equation (28) maps these ordered pairs into rank 2 tensors
A⊗B ∈ C

4
1;1. On the left edge, σ×σ represents the Cartesian

product of the σ operator with itself. When σ×σ is applied
to an ordered pair, it produces a new ordered pair in which
the σ operator has been applied separately to each of the two
elements; i.e. (σ × σ) (A,B) = (σA, σB). On the right edge,
σ ⊗ σ represents the isomorphism between C

4
1;1 and C

2
2;2, as

embodied in Equations (22) and (23). When σ ⊗ σ is ap-
plied to a tensor product it produces a new tensor product
in which the σ operator has been applied separately to each
of the two operands; i.e. (σ ⊗ σ) (A⊗B) = (σA) ⊗ (σB).
Owing to the universal property of the tensor product, the
σ⊗σ operator is unique. A similar commutative diagram can
be drawn in which the ⊗ operators on the top and bottom
edges are replaced by the ⊗̃ operator.

Equations (28) and (30) are the required tensor prod-
ucts of the Stokes parameters that yield 4 × 4 matrix

representations of the tensor products defined by Equa-

tions (15) and (16), respectively.

2.3. The Stokes cumulant

The results of the previous two sub-sections are sum-

marized in the commutative diagram shown in Figure 1.

Although the mappings shown in this diagram have been
derived and discussed in the context of the Stokes pa-

rameters and coherency matrix, they are purely alge-

braic transformations between vector spaces and are
completely independent of any consideration of statis-

tical moments. In this section, these mappings are ap-

plied to convert Equation (13) into an equivalent rela-

tion between the cumulants and moments of the Stokes
parameters. Setting U = κ2;2(e) in Equation (22) and

converting each of the three terms on the right hand side

of Equation (13) using Equations (28) and (30) yields
the Stokes cumulant matrix

Q = 〈s⊗ s〉 − S ⊗ S − S ⊗̃S, (32)

where lower-case s represents the instantaneous Stokes

four-vector with components defined by

sµ ≡ r :σµ = e†σµe,

and upper-case S ≡ 〈s〉 represents the population mean

Stokes parameters. Noting that S ∧ S = 0,

S ⊗̃S = S ⊗ S − 1

2
ηS2, (33)

where S2 is the invariant interval of the Stokes four-

vector (e.g. Barakat 1963; Stinebring et al. 1984; Britton

2000) defined by

S2 ≡ S · S = S2
0 − |S|2. (34)

Here, the Stokes four-vector is separated into the to-
tal intensity S0 and the polarization vector, S =

(S1, S2, S3).

The real-valued 4× 4 matrix Q represents the fourth-

order cumulants of the electric field vector as second-
order moments of the instantaneous Stokes parameters;

it is used in Section 3.2 to determine the covariances

between the Stokes parameters when two sources of ra-
diation are superposed. Even when considering only a

single source of radiation, the Stokes cumulant matrix

can be used to compute the covariances between the in-
stantaneous Stokes parameters, which are defined by the

4 × 4 covariance matrix,

C ≡ 〈s⊗ s〉 − S ⊗ S. (35)

Substitution of the above into Equation (32) yields

Q = C− S ⊗̃S. (36)

If the components of the electric field are jointly drawn
from a circular complex-valued multivariate normal dis-

tribution (Goodman 1963), then all cumulants above

second order are equal to zero and C = S ⊗̃S, which is
consistent with the results of Brosseau & Barakat (1992)

and van Straten (2009). In this special case, the covari-

ances between the instantaneous Stokes parameters are
completely defined by the population mean Stokes pa-

rameters. van Straten (2009) argued that C = S ⊗̃S

regardless of the distribution of the electric field; how-

ever, as shown by Equation (32) and discussed in more
detail in Section 4.2, this assertion is incorrect and the

relation holds only in the special case that the electric

field vector is complex circular normal.

3. COVARIANCES BETWEEN THE SAMPLE
MEAN STOKES PARAMETERS

A statistical description of the sample mean Stokes
parameters begins with the definition of a Stokes sample:

a finite sample of n instances of the electric field vector

from which the sample mean coherency matrix ρ̄ and
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sample mean Stokes parameters S̄ are computed via

ρ̄ ≡ 1

n

n
∑

i=1

ei ⊗ e
†
i =

1

2
S̄µσµ. (37)

Over a population of independent estimates of S̄, each

drawn from mutually exclusive Stokes samples,4 the co-
variances between the sample mean Stokes parameters

are defined by the 4 × 4 covariance matrix,

C̄ = 〈S̄ ⊗ S̄〉 − S ⊗ S, (38)

where S ≡ 〈S̄〉 represents the population mean Stokes

parameters.5 If the instances of the electric field vector

are statistically independent and identically distributed,
then C̄ = Cn−1, where C is the covariance matrix of

the instantaneous Stokes parameters defined in Equa-

tion (35) and n is the number of independent instances

of the electric field in each Stokes sample.
Figure 2 illustrates the special case of Stokes samples

drawn in the time domain; however, it should be noted

that the analysis presented in this paper applies in any
domain (temporal, spectral, or spatial). In addition to

emission from a single source (or mode) of radiation,

this figure depicts the combination of electromagnetic
waves from two sources (or two modes of emission from

a single source) in the three special cases outlined in the

introduction (disjoint, superposed, and composite sam-

ples). These classifications are highly idealized and in
reality the distinction between statistical regimes may

not be so clean. For example, the scale for switching be-

tween mutually exclusive modes could be variable and
span intervals that are both smaller and greater than the

integration interval of the instrument; in this case, the

source would be described by a mixture of disjoint and
composite samples. Similarly, mutually exclusive modes

can become partially superposed by processes that in-

troduce temporal, spatial, or spectral coherence, such as

passage through a linear time-invariant system (such as
the interstellar medium) that is characterized by an im-

pulse response function with a duration that exceeds the

timescale for switching between modes. Nevertheless,
these idealizations provide a sound conceptual frame-

work on which to base more realistic models.

In the following sections, eA and eB are the electric
field vectors associated with two modes of emission; the

modes are strictly stationary and have population mean

Stokes parameters, A and B. The two modes may have

completely different statistical distributions; e.g. the in-

4 For example, the population could consist of the sample mean
Stokes parameters for a given phase bin drawn from a series of
sub-integrations of the average pulse profile.

5 The population mean of the sample mean Stokes parameters
is equal to the population mean of the instantaneous Stokes pa-
rameters.

Figure 2. Depiction of different Stokes sample types in the
time domain. A Stokes sample (represented as a series of
n = 8 delta functions) consists of a sequence of instances of
the electric field sampled at regular intervals separated by
tsamp and spanning an integration interval defined by Tint.
Two independent Stokes samples are shown separated by a
dashed vertical line. Emission in one mode is represented
by a trapezoid filled with hatch lines of a single orientation;
emission in the other mode is represented using hatch lines
rotated by 90 degrees. Each disjoint Stokes sample is en-
tirely comprised of instances drawn exclusively from only one
population or the other. Composites Stokes samples include
instances drawn from both populations. When the modes
are superposed, a cross hatch pattern represents the new
polarization state that arises when electric field instances
drawn from both populations are added together before the
instantaneous Stokes parameters are computed. Although
two Stokes samples are shown side-by-side, they need not
necessarily be contiguous in the time domain. For example,
in single-pulse studies, each Stokes sample might be inte-
grated over a fixed range of pulsar longitude such that the
start time of each Stokes sample is temporally separated from
the next by the pulsar spin period. In this case, the sample
mean Stokes parameters record the polarization state of the
pulsar emission over that longitude range as a function of
pulse number (integer turns of the pulsar).

tensity of mode A could be log-normally distributed and

that of mode B could be exponentially distributed. It is

assumed that instances of the electric field from a single
mode are statistically independent and identically dis-

tributed; therefore C̄A = CAn
−1 and C̄B = CBn

−1 de-

scribe the covariances between the sample mean Stokes

parameters after averaging over a Stokes sample of n
instances of the electric field drawn exclusively from

either mode A or mode B, respectively. Sections 3.1

through 3.3 present general expressions for the covari-
ances between the Stokes parameters in the three statis-

tical regimes, illustrative examples are presented in Sec-

tion 3.4, and in Appendix D it is demonstrated that com-
posite samples of unresolved disjoint modes may have

been incorrectly identified as superposed modes in pre-

vious studies.
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3.1. Disjoint Samples

If the modes are mutually exclusive and the inter-

val over which the Stokes parameters are integrated is
smaller than the scale over which mode switching occurs,

then the modes are resolved. In this case, every instance

of the electric field vector in a given Stokes sample is
drawn exclusively from only one of the two populations

and the sample mean Stokes parameters are given by

either Ā or B̄. When averaged over many Stokes sam-

ples, the population mean Stokes parameters are given
by the weighted mean of the population mean Stokes

parameters of each mode, S = FA+ (1−F )B, where F

is the fraction of Stokes samples that occur in mode A.
Although F might reasonably fluctuate (e.g. as a func-

tion of time), only the ideal case in which F remains

constant is considered for now. If the modes are statis-
tically independent, then the covariance matrix of the

sample mean Stokes parameters is given by

C̄d = F C̄A + (1 − F )C̄B + F (1 − F )(A−B)⊗2, (39)

where (A − B)⊗2 = (A − B) ⊗ (A − B) is the second
tensor power of the differences between the population

mean Stokes parameters of the modes. As shown in

Appendix D, the above equation is consistent with the
definition of disjoint modes presented in equation (5) of

Cordes et al. (1978).

3.2. Superposed Samples

When the electromagnetic wave modes are super-

posed, each instance of the electric field vector in a

Stokes sample is given by the sum, e = eA+eB . For su-
perposed samples, the population mean coherency ma-

trix is given by

ρ = ρA + ρB + χ + χ† (40)

where ρA and ρB are the coherency matrices of eA and

eB , and

χ ≡ 〈eA e
†
B〉 (41)

is the cross-coherency matrix that describes the coher-

ence of the polarized modes. In the special case of an

incoherent sum, the population mean χ = 0; however,
in each finite Stokes sample, the sample mean χ̄ is not

exactly zero and the variance of the sample mean cross-

coherency contributes to the fourth-order moments of
the electric field.

If the modes are statistically independent, then the

population mean Stokes parameters are S = A+B and

the Stokes cumulant of the sum is Q = QA+QB . Using
Equation (32), the covariances between the sample mean

Stokes parameters of the sum are

C̄s = C̄A + C̄B + n−1A ⊙̃B, (42)

where

A ⊙̃B=A ⊗̃B +B ⊗̃A

=A⊗B +B ⊗A− ηA ·B (43)

is twice the symmetric part of A ⊗̃B; it describes the
cross-covariance between the instantaneous Stokes pa-

rameters of the modes and depends on only the popula-

tion mean Stokes parameters of the modes. As shown in

Appendix D, Equation (42) is consistent with the def-
inition of superposed modes presented in equation (5)

of Cordes et al. (1978) only in the special case of 100%

polarized modes and only when considering the instan-
taneous Stokes parameters.

The cross-covariance A ⊙̃B is a function of only the

population mean Stokes parameters and does not ex-
plicitly depend on unique statistical degrees of freedom

for each of the modes, as asserted in the erratum of

van Straten (2009). As an aside, note that the variance

of the instantaneous (n = 1) total intensity predicted by
the above equation is consistent with the variance of the

instantaneous intensity of superposed scalar fields. This

can be shown by transforming the electric field vector
by a singular Jones matrix that reduces its dimension to

that of a single scalar field. In this basis, all sources are

observed to be 100% polarized, such that A ·B = 0 and
{

C̄s

}0

0
of Equation (42) reduces to ς2ξ of Equation (7).

3.3. Composite Samples

When only one mode contributes at any instant and

both modes contribute to the signal in the interval over
which the sample mean Stokes parameters are inte-

grated, then the disjoint modes are unresolved. In this

case, each Stokes sample is a union of sub-samples drawn

from two mutually exclusive populations and the com-
posite sample mean Stokes parameters are equal to the

weighted average of the sample mean Stokes parameters

of each mode; i.e. S̄ = fĀ + (1 − f)B̄, where f is the
constant fraction of samples that occur in mode A in

each Stokes sample. It is also reasonable that f might

fluctuate between Stokes samples; here, only the ideal
case in which f remains constant is considered. If the

modes are statistically independent, then the covariance

matrix of the sample mean Stokes parameters is given

by

C̄c = fC̄A + (1 − f)C̄B . (44)

As shown in Appendix D, the above equation is con-

sistent with the definition of mode superposition pre-
sented in equation (5) of Cordes et al. (1978). It is also

consistent with the definition of superposed modes de-

scribed in Section 2.1 of McKinnon & Stinebring (1998)
and with the definition of an incoherent sum described in

Section 4.3 of van Straten (2009). In the erratum to the

latter work, van Straten (2010) redefines an incoherent
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sum that is consistent with classical wave superposition,

as defined in the previous section; however, the distinc-

tion between superposed and composite samples was not

recognized in this previous work.

Table 1. Regimes of Mode Combination

Property Superposed Composite Disjoint

Electric Field Instances e ∈ {eA + eB}n e ∈ {eA}fn ∪ {eB}(1−f)n e ∈ {eA}n ⊻ e ∈ {eB}n

Sample Mean Stokes Parameters S̄ ∈ {Ā+ B̄}N S̄ ∈ {fĀ+ (1− f)B̄}N S̄ ∈ {Ā}FN ∪ {B̄}(1−F )N

Covariances of Sample Means C̄A + C̄B + n−1A ⊙̃B fC̄A + (1− f)C̄B F C̄A + (1− F )C̄B + F (1− F )(A−B)⊗2

Incoherent Sum pre-detection post-detection N/A

Mutual Exclusivity N/A unresolved resolved

3.4. Illustrative Examples

The three regimes of mode combination presented in
the previous sub-sections are summarized in Table 1,

where {e}n ≡ {e1, e2, . . . en} is a Stokes sample of n in-

stances of the electric field vector, {S̄}N is a population
of N → ∞ instances of sample mean Stokes parameters,

∪ is the set union operator, and ⊻ is the exclusive dis-

junction. The last two rows of this table highlight some

of the semantic and conceptual similarities between the
three statistical regimes. The term “incoherent sum” is

used to describe both the pre-detection classical wave

superposition of statistically independent signals (e.g.
astronomical source plus receiver noise) and the post-

detection integration of flux densities (e.g. integration

over time and radio frequency). A source that switches
between mutually exclusive states will result in either

composite or disjoint samples, depending on the inter-

val over which the sample mean is integrated and the

characteristic scale for mode switching.
To illustrate the fundamental differences between the

three types of Stokes sample, consider the incoherent

sum of orthogonally polarized modes with normally dis-
tributed electric fields, equal population mean intensi-

ties I and equal degrees of polarization p. Note that or-

thogonally polarized states have anti-parallel population
mean Stokes polarization vectors and, without any loss

of generality, assume that the basis in which the Stokes

parameters are measured is the natural basis defined by

the modes, such that S2 = S3 = 0. Furthermore, for
both composite and disjoint samples, the modes occur

with equal frequency (i.e. f = F = 0.5) such that, for

all three sample types, the resulting signal is completely
depolarized; i.e. the population mean Stokes polariza-

tion vector S = 0. Finally, assume that each Stokes

sample is sufficiently large that the distributions of the
sample mean Stokes parameters are well approximated

by a multivariate normal distribution. (This is a rea-

sonable assumption in single-pulse studies because each

phase bin typically spans thousands of instances of the
electric field.) Note that the population mean Stokes

parameters provide no information about the manner in

which the signals have been combined. However, as de-
picted in Figure 3, the three-dimensional distributions

of the sample mean Stokes polarization vector are fun-

damentally different in each case.
These differences are also evident in the structure of

the 4 × 4 matrix of covariances between the sample

mean Stokes parameters. When only a single source

contributes, C = S ⊗̃S and in the natural basis Equa-
tion (33) yields

C̄single =
1

2n















‖S‖2 2I2p 0 0

2I2p ‖S‖2 0 0

0 0 S2 0

0 0 0 S2















, (45)

where the Euclidean norm

‖S‖2 ≡ S2
0 + |S|2. (46)

In this example, ‖S‖2 = I2(1 +p2) and S2 = I2(1−p2).

Note that the principal polarization S1 is covariant with

the total intensity S0 and that the variances of S0 and S1

are equal. Furthermore, the variances of S2 and S3 are

equal and less than the variances of S0 and S1; therefore,

the distribution of the sample mean Stokes polarization
vector is described by a prolate spheroid that is rota-

tionally symmetric about the population mean Stokes

polarization vector. The axial ratio of this spheroid,
ǫ = ((1 + p2)/(1 − p2))1/2, is completely defined by the

degree of polarization of the population mean Stokes

parameters.



Disjoint, Superposed, and Composite Samples 11

For disjoint samples, the bimodal distribution of sam-

ple mean Stokes parameters is no longer accurately de-

scribed by a multivariate normal distribution. The dif-

ference between the population mean polarization vec-
tor of each mode (i.e. the distance between the centres

of each prolate spheroid, 2Ip) adds to the estimated

variance along the principal axis. This is readily seen
by expressing Equation (39) in the natural basis, which

yields

C̄disjoint =
1

2n















‖S‖2 0 0 0

0 ‖S‖2 + 2nI2p2 0 0

0 0 S2 0

0 0 0 S2















.

Whereas the sizes of the disjoint prolate spheroids are

inversely proportional to the square root of the sample

size, the distance between their centres is not decreased
by integration.

For superposed samples, the instantaneous intensity

is doubled and the cross-covariance between the modes
yields a hyperspherically symmetric distribution de-

scribed by Equation (42),

C̄superposed =
1

2n















4I2 0 0 0

0 4I2 0 0

0 0 4I2 0

0 0 0 4I2















.

In this example, superposition yields unpolarized radia-
tion, for which the distribution of sample mean Stokes

parameters is expected to be hyperspherically symmet-

ric when the voltage is normally distributed.

For composite samples, integration over an equal num-
ber of instances of each mode yields a prolate spheroidal

distribution of the sample mean Stokes polarization vec-

tor with the same dimensions as those of the origi-
nal modes, now centred on the origin; i.e., from Equa-

tion (44),

C̄composite =
1

2n















‖S‖2 0 0 0

0 ‖S‖2 0 0

0 0 S2 0

0 0 0 S2















.

In this example, when orthogonal modes are combined,
the principal polarization is no longer covariant with

the total intensity (i.e. C1
0 = C0

1 = 0) because the two

modes contribute equally and oppositely to this term.
For both disjoint and composite samples, the axial ratio

ǫ = ς1/ς2 that is inferred from the covariance matrix

is greater than unity. As this is inconsistent with the

Figure 3. Distributions of the sample mean Stokes polariza-
tion vector in each regime of orthogonal mode combination.
In each row, the origin (unpolarized flux) is marked by a
dot and the principal axis (defined by the population mean
polarization vectors of the modes) is marked by the dashed
line that runs horizontally through the origin. All of the
spheroids are symmetric under rotation about the principal
axis, the axes of the spheroids are proportional to the stan-
dard deviations of the components of the sample mean Stokes
polarization vector S̄ = (S̄1, S̄2, S̄3), and the axial ratios are
defined by the degree of polarization of the population mean
Stokes parameters, p = |S|/S0.

degree of polarization of the population mean Stokes

parameters, it potentially serves as an experimental

indicator of mutually exclusive modes.

4. INTERPRETATION

Given only the population mean Stokes parameters,

the three regimes of mode combination (disjoint, super-

posed, and composite samples) described in the previous
section cannot be distinguished; however, in principle,

they may be differentiated via the covariances between

the Stokes parameters. A 4 × 4 symmetric and real-
valued covariance matrix contains 10 unique elements;

using principal component analysis, these may be re-

duced to 7 numbers of interest as follows. First, con-
formably partition the 4 × 4 covariance matrix into the

variance of the total intensity, the 3×3 covariance matrix

of the Stokes polarization vector, and the 3-dimensional

vector of covariances between the total intensity and the
components of the polarization vector. Then, project

the Stokes parameters onto the basis defined by the

eigen decomposition of the 3 × 3 covariance matrix of
the Stokes polarization vector. This diagonalizes the

3 × 3 partition, leaving only four variances ς2µ = Cµ
µ

along the diagonal and three covariances Cj
0 (= C0

j ) in
the first row (and column). In this eigenbasis, assum-

ing normally distributed electric field components, the

following conditions hold.
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1. Both a single mode and superposed modes pro-

duce prolate spheroidal distributions of the sample mean

Stokes polarization vector such that the primary axis of

the distribution (as defined by the eigenvector with the
largest eigenvalue) is aligned with the population mean

Stokes polarization vector, the distribution is symmet-

ric under rotation about this axis (ς2 = ς3), and the
axial ratio ǫ ≡ ς1/ς2 = ((1 + p2)/(1 − p2))1/2, where

p = |S|/S0 is the degree of polarization of the popula-

tion mean Stokes parameters. The standard deviation
of the primary polarization is equal to that of the total

intensity (i.e. ς1 = ς0) and the total intensity is uncorre-

lated with the minor polarizations (i.e. C2
0 = C3

0 = 0).

2. Mutually exclusive orthogonally polarized modes
(both disjoint and composite samples) also exhibit pro-

late spheroidal distributions of the sample mean polar-

ization vector with cylindrical symmetry about the pop-
ulation mean polarization vector. However, in this case,

the axial ratio is inconsistent with the degree of polar-

ization of the population mean Stokes parameters.
3. In the case of disjoint modes, the standard de-

viation of the primary polarization ς1 may exceed the

standard deviation of the total intensity ς0.

However, several important phenomena invalidate the
above simple observations. First, as described in more

detail in Section 4.1, the contribution of superposed

noise from both the sky and the instrument must be
properly subtracted before the covariances between the

Stokes parameters that are intrinsic to the source can

be interpreted. Second, the equations that describe su-
perposed and composite samples are valid only when

the modes are statistically independent. Any depen-

dence between the modes, such as partial coherence

or covariant intensities, will invalidate points 1 and
3 above. Partial coherence of orthogonally polarized

modes (e.g. Gangadhara 1997) is a plausible means

of generating non-orthogonal modes and, in the case
of composite samples, covariant mode intensities cause

the variance of the primary polarization to differ from

that of the total intensity (e.g. McKinnon & Stinebring
1998). In particular, anticorrelated mode intensities

can mimic the observable effects of disjoint modes by

causing the variance of the primary polarization to

be greater than that of the total intensity. Third,
the effects of propagation through inhomogeneities in

the electron density (e.g. Cordes et al. 2004) and mag-

netic field (e.g. Melrose & Macquart 1998) of the in-
terstellar medium have not been considered. Finally,

as described in more detail in Section 4.2, amplitude

modulation alters the form of the covariance matrix
in a manner that depends on the correlated structure

of the amplitude modulating function. To distinguish

between pulsar-intrinsic and scintillation-induced vari-

ability, future work will incorporate analyses based on

the autocorrelation functions of the Stokes parameters

(e.g. Cordes & Hankins 1977; Cordes et al. 2004) and

may employ techniques similar to the fluctuation spec-

tral analysis introduced by Edwards & Stappers (2003);
Edwards (2004); Edwards & Stappers (2004).

4.1. Superposed Sky and Instrumental Noise

Consider the observation of a source of electromag-
netic radiation described by the population mean Stokes

parameters SS and covariance matrix CS superposed

with statistically independent sky and instrumental

noise described by population mean Stokes parame-
ters SN and covariance matrix CN. Section 4.3 of

van Straten (2009) incorrectly asserts that the incoher-

ent addition of unpolarized noise adds a constant term
to each element of the diagonal of the observed covari-

ance matrix. Rather, using Equation (42), the covari-

ance matrix of the observed superposition is given by

Cobs = CS + CN + SS ⊙̃SN. (47)

The above equation requires no assumptions regarding

the distribution of the electric field or the nature of the
source (e.g. mode switching). It is more generally ap-

plicable than Equation (9) of Cordes & Hankins (1977),

which is valid only under the assumption that the system

and sky noise are unpolarized and normally distributed.
To solve Equation (47) for the source-intrinsic covari-

ance matrix CS, it is necessary to subtract both CN

and SS ⊙̃SN from the observed covariance matrix. In
observations of radio pulsars, both SN and CN are read-

ily obtained from the off-pulse noise statistics. However,

if it can be assumed that the electric field of the noise is
normally distributed, then greater sensitivity is achieved

by estimating the covariances between the noise Stokes

parameters via CN = SN ⊗̃SN. The Stokes parameters

of the source SS are obtained by subtracting SN from the
observed Stokes parameters S. Given this information,

Equation (47) is trivial to solve for CS.

4.2. Amplitude Modulation

The derivation of the covariances between the sam-

ple mean Stokes parameters presented in Section 3.3 of

van Straten (2009) begins with the incorrect assertion

that, for unpolarized radiation, the covariance matrix
C is proportional to the 4 × 4 identity matrix, regard-

less of the distribution of the electric field vector. This

assertion derives from the erroneous presumption that
uncorrelated signals are also statistically independent.6

6 The faulty reasoning proceeds as follows. First, because the
radiation is unpolarized, the instantaneous intensities of the un-
correlated electric field vector components must also be uncorre-
lated; therefore, because S0 and S1 are the sums and differences
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This flawed reasoning is also reflected in Section 4.1 of

van Straten (2009), in which it is incorrectly argued that

scalar amplitude modulation uniformly scales the covari-

ances of the Stokes parameters by reducing the effective
statistical degrees of freedom.

In fact, scalar amplitude modulation introduces sta-

tistical dependence between the components of the elec-
tric field vector, such that their instantaneous intensi-

ties are correlated. As the total intensity is the sum

of the intensities of the two field components, positive
covariance between the field component intensities in-

creases the variance of the amplitude-modulated total

intensity, even in the case of unpolarized radiation. In

contrast, each of the components of the Stokes polar-
ization vector can be represented as differences in the

intensities of the electric field components in a given ba-

sis (Born & Wolf 1970). Therefore, positive covariance
between the field component intensities decreases the

variances of the amplitude-modulated Stokes polariza-

tion vector components. That is, when the electric field
vector is amplitude modulated by a scalar multiplier,

the variances of the components of the Stokes polariza-

tion vector are expected to be less than the variance of

the total intensity.
The above reasoning is formally demonstrated by con-

sidering amplitude modulation of the electric field vector

by a statistically independent random and real-valued
dimensionless scalar

√
u, producing e′ =

√
ue. Using

a variation of the technique introduced by Goodman

(1960), the covariances between the modulated instan-
taneous Stokes parameters are shown to be

C′ =
(

ς2u + 1
)

C + ς2u S ⊗ S, (48)

where ς2u is the variance of u, C is the covariance matrix

of the unmodulated instantaneous Stokes parameters, S

is the population mean Stokes four-vector, and without
any loss of generality it is assumed that scalar amplitude

modulation does not alter the population mean Stokes

parameters (i.e. 〈u〉 = 1). In the natural basis where
S0 ≥ S1 ≥ 0 and S2 = S3 = 0, it is readily seen that

the last term in the right-hand side of Equation (48)

increases only the variances of the total intensity S0

and the primary polarization S1 and the covariance be-

of uncorrelated random values, their variances should be equal.
Second, the statistics of unpolarized radiation should be indepen-
dent of the basis in which it is measured; therefore, the variances
of all three components of the Stokes polarization vector should
be equal. A simple counter-example disproves both of these as-
sumptions. Consider an electric field vector with components that
have random, uncorrelated phases but equal amplitudes given by
the random variate

√
a. The resulting signal is completely unpo-

larized; however, the field component intensities are completely
correlated. In this case, the variance of S0 is four times the vari-
ance of a, the variance of S1 is zero, and the variances of S2 and
S3 are equal to the second moment of a.

tween them. Furthermore, for partially polarized radi-

ation where S0 > S1, amplitude modulation increases

the variance of the total intensity ς20 by more than it

increases the variance of the primary polarization ς21 .
This provides a simpler explanation for the observation

made in Section 4.4 of van Straten (2009), in which it is

argued that orthogonally polarized modes with covari-
ant intensities could explain ς0 > ς1. Rather, amplitude

modulation causes ς0 > ς1 even when only a single mode

of emission contributes to the observed signal.
Equation (48) is valid only for the instantaneous

Stokes parameters. To derive the covariances between

the sample mean Stokes parameters, any correlations be-

tween instances of the amplitude modulating scalar vari-
ate (e.g. subpulse structure) must be considered, which

is beyond the scope of this paper. Temporally correlated

structure of the amplitude modulation function has been
rigorously studied in the seminal works of Rickett (1975)

and Cordes (1976).

5. CONCLUSION

The statistical framework presented in this paper can

be applied to sources with arbitrary distributions of flux

density; it also incorporates the effects of instrumental

integration over finite samples. Therefore, it is ideally
suited to the study of variability in polarized radiation

on short timescales, such as the polarization of subpulse

structure in radio pulsar emission.
Consideration of integration over finite samples high-

lights the following important results. First, the argu-

ments that have been presented to date in support of
superposed modes of pulsar radiation apply equally well

to a composite sample of unresolved disjoint modes. For

example, both superposition and composition of modes

result in depolarization when integrated over a finite
sample. As argued in the introduction and elaborated

in Appendix A, observational evidence of unresolved dis-

joint modes has already been presented in the published
literature. In Appendix D, the statistical test defined by

Equation (5) of CRB is shown to be valid only when the

orthogonally polarized modes are assumed to be 100%
polarized and only when the second moments of the

instantaneous Stokes parameters are measured. When

this test is applied to single-pulse data comprised of sam-

ple mean Stokes parameters, a composite sample of mu-
tually exclusive modes will be incorrectly identified as

superposed.

In principle, it is possible to differentiate between
the three regimes of mode combination (disjoint, super-

posed, and composite samples) through analysis of the

covariances between all four Stokes parameters. How-
ever, various physical phenomena complicate interpre-

tation. Most importantly, amplitude modulation – pri-

marily that intrinsic to the pulsar emission mechanism,
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but also that arising in the interstellar medium – sig-

nificantly alters the structure of the 4 × 4 covariance

matrix. The impact of amplitude modulation on the co-

variances between the sample mean Stokes parameters
depends on the correlated structure of the amplitude

modulating function (e.g. subpulse structure). More de-

tailed treatments of phenomena such as amplitude mod-
ulation (e.g. Os lowski et al. 2013), partial mode coher-

ence (e.g. Gangadhara 1997), covariant mode intensities

(e.g. McKinnon & Stinebring 1998), and scintillation in
a magnetized plasma (e.g. Melrose 1993a,b) are required

before the statistical framework presented in this paper

will be sufficiently developed to interpret observational

data. Therefore, a set of simulations were developed to

verify the equations presented in this work; these are

described in Appendix E.

Parts of this research were supported by the Aus-

tralian Research Council Centre of Excellence for All-
sky Astrophysics (CAASTRO), through project number

CE110001020, and the Australian Laureate Fellowships

scheme, through project number FL150100148. The au-
thors are grateful to Pablo Rosado for helping to test

the derivation presented in Appendix C. We also thank

Damien Hicks for useful discussions and feedback on the

paper.

APPENDIX

A. EVIDENCE FOR DISJOINT MODES OBSERVED BY GANGADHARA ET AL. (1999)

The scatter plots presented in Figure 3 of Gangadhara et al. (1999), hereafter G+99, demonstrate that the degree of

polarization of single pulses (both fractional linear and fractional circular polarization) increases as the instrumental
integration length (or sample size) is decreased. To support the argument that this correlation represents plausible

evidence of unresolved, disjoint, and orthogonally polarized modes, it is necessary to rule out a comparably plausible

alternative interpretation: the observed correlation between temporal resolution and degree of polarization could be a
manifestation of a well known statistical bias to the degree of polarization that increases as the sample size is decreased;

e.g. see Figure 3 of van Straten (2009), hereafter vS09.

G+99 observed PSR B1133+16 using an instrument with a bandwidth of ∆ν = 40 MHz and, even on the shortest
time scale presented, τmin = 150 µs, the sample size (given by the time-bandwidth product) is n = τmin∆ν = 6 × 103.

For normally distributed noise, Equation (B4) of vS09 predicts a maximum expected bias to the degree of polarization

of less than 2%, which is too small to explain the correlation observed by G+99. However, as discussed in Section 4 of

vS09, the effective sample size (or statistical degrees of freedom) may be reduced by amplitude modulation and wave
coherence, such as that introduced by multipath propagation in the interstellar medium. The scintillation bandwidth

of PSR B1133+16 is around 60 MHz at 1 GHz (Cordes 1986) and the corresponding coherence time in the observations

by G+99 (made at a center frequency of 1.41 GHz) is 4 to 5 orders of magnitude smaller than τmin. Therefore, the
impact of scattering on the effective sample size is negligible.

To estimate the order of magnitude of the bias to the degree of polarization induced by amplitude modulation,

it is necessary to characterize and model the physical nature of subpulse structure, which varies between pulsars.
For the purposes of this argument, it suffices to describe the subpulse structure by its characteristic width τ and

the modulation index β that is observed after the instrument integrates over some number of unresolved subpulses.

Conservative selection of these parameters for PSR B1133+16 is based on the following derivation of the relationship

between them.
Consider normally distributed unpolarized noise that is modulated by a contiguous sequence of rectangular subpulses.

Assume that the unpolarized noise has a population mean total intensity of unity and that the characteristic subpulse

width τ corresponds to a sub-sample size n′; therefore, before modulation, the sub-sample mean total intensity S̄′
0

has a variance of (2n′)−1, as given by Equation (45). As noted in the introduction, radio pulsar emission typically

exhibits log-normal distributions of subpulse amplitude (e.g. Cairns et al. 2003; Os lowski et al. 2014). Therefore, let

the amplitude u of each rectangular subpulse be drawn from a log-normal distribution; i.e. u = exp(v), where v is a
normally distributed random variate with zero mean and standard deviation ς, such that the mean and variance of u

are 〈u〉 = exp
(

ς2/2
)

and ς2u = exp
(

2ς2
)

− exp
(

ς2
)

respectively.

Now consider the average of N ′ = n/n′ such subpulses, yielding the sample mean of N ′ statistically independent

instances of the amplitude modulated sub-sample mean intensity, uS̄′
0. The variance of the sample mean normalized

by the square of the population mean yields the square of the modulation index

β2 =
1

n

[

(

exp
(

ς2
)

− 1
)

(

n′ +
1

2

)

+
1

2

]

, (49)
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which is trivially solved for the value of ς required to yield a chosen modulation index, given the sample size n and

the sub-sample size n′ of the modulating subpulses.

For a fixed sample size, Equation (49) shows that the modulation index decreases as the subpulse width decreases,

which necessitates a larger value of ς to achieve a certain sample mean intensity modulation index. In turn, this
decreases the effective sample size and increases the bias to the degree of polarization. Therefore, to present a

conservative upper limit on bias, the shortest microstructure characteristic timescale, τµ−narrow ∼ 10 µs, estimated

by Popov et al. (2002) is adopted. Similarly, from the phase-resolved modulation index of PSR B1133+16 presented
in Figure A.19 of Weltevrede et al. (2006), the maximum value of β ∼ 2.4 is assumed. The adopted values yield

n′ = τµ−narrow∆ν = 400, N ′ = τmin/τµ−narrow = 15, and ς ∼ 2.1; given these parameters, a simple simulation

(described in Appendix E) shows that the bias to the degree of polarization is less than 4%. Although the subpulse
structure of pulsars does not consist of a sequence of rectangular impulses, this tractable basic model is sufficient to

demonstrate to first order that amplitude modulation by narrow subpulses with log-normally distributed amplitudes

does not significantly reduce the statistical degrees of freedom in the pulsar signal. Therefore, as neither wave coherence

nor amplitude modulation reproduce the observed correlation between degree of polarization and temporal resolution,
it is unlikely that the correlation can be dismissed as a consequence of the bias associated with small number statistics.

B. COMPARISON WITH CARDOSO (1991)

Equations (15) through (21) incorporate a couple of conventions that are different to those used by Cardoso (1991).
Although these differences are of no consequence in this work, they deserve mention. First, note that Equation (6) of

Cardoso (1991) includes the Hermitian transpose of the second operand B in the definitions of the tensor products,

⊗ and ⊗̃. To maintain consistency with the notation of Equation (8), where the tensor product and adjoint operator
are separately and explicitly invoked, the implicit adjoint operator is omitted from the definitions in Equations (15)

and (16) and therefore does not appear on the right hand sides of Equations (24) and (25). This distinction is

inconsequential because in this work ρ, A and B are self-adjoint and linearly related to real-valued Stokes parameters.
Also note that the double contraction defined in Equation (21) uses an index notation convention that is different

to the one that appears on the left hand sides of Equation (6) in Cardoso (1991). As inferred from the indeces on

the tensor coordinates in the text that follows Equation (6), the convention used by Cardoso (1991) is defined by

transposing ρ in Equation (21). Again, this difference is of no consequence because the tensor coordinates are of
secondary importance to the transformation properties of A⊗B and A ⊗̃B.

More important than these minor differences is the fundamental consistency between the findings of Cardoso (1991)

and the results of Section 2. After accounting for the difference in index notation convention mentioned above, the
third symmetry identified by Cardoso (1991) is easily seen to be equivalent to the transpose over contravariant tensor

indeces that converts A ⊗ B into A ⊗̃B (and vice versa). This leads to a useful interpretation of the “Rank One

Lemma” demonstrated by Cardoso (1991). In the special case of 100% polarized radiation, the coherency matrix has
a rank of one because it has only one non-zero eigenvalue (e.g. Eq. [7] of van Straten 2009, and the discussion that

follows). In this case, the Lorentz invariant of the associated Stokes parameters S2 = 0 and S ⊗ S = S ⊗̃S; that is,

in the case of 100% polarization, the two tensor products are invariant under the third symmetry and equal to each

other. Note that the instantaneous coherency matrix is always rank one and the instantaneous Stokes parameters
always satisfy s⊗ s = s ⊗̃ s.

C. DERIVATION OF EQUATION (30)

To derive Equation (30), substitute A = Aασα/2 and B = Bβσβ/2 into Equation (27) to express it in terms of the
associated Stokes parameters,

{

M⊗̃ (A,B)
}ν

µ
=

1

2
σµ : (Aσν B) =

1

8
AαBβTr [σµ σα σν σβ ] . (50)

For each of the 16 elements of M⊗̃ (A,B), a total of 16 terms arise in the above double sum over α and β. The trace

of a product of four Pauli matrices has been derived in Appendix B of Melrose (1993a). To arrive at a more compact,

coordinate-free representation, the 4 × 4 matrix is partitioned into the following four parts.

1. ν = µ = 0

2. ν = 0 and µ = j > 0

3. ν = k > 0 and µ = 0
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4. ν = k > 0 and µ = j > 0

For each part, the double sum is solved as follows.

1. When µ = ν = 0, the result is simply one quarter of the Euclidean inner product of the Stokes four-vectors; i.e.,

{

M⊗̃ (A,B)
}0

0
=

1

2
Tr [AB] =

1

4
AµBµ. (51)

2. When µ = j > 0 and ν = 0, the double sum can be partitioned into the same four parts

(a) α = β = 0: Tr[σj ]=0

(b) α = 0 and β = b > 0: Tr [σjσb] = 2δjb

(c) α = a > 0 and β = 0: Tr [σjσa] = 2δja

(d) α = a > 0 and β = b > 0: Tr [σjσaσb] = 2iǫjab

where ǫjkl is the rank 3 permutation pseudotensor, yielding

{

M⊗̃ (A,B)
}0

j
=

1

4
(A0Bj +AjB0 + iǫjabAaBb) . (52)

3. Similarly, when µ = 0 and ν = k > 0,

{

M⊗̃ (A,B)
}k

0
=

1

4
(AkB0 +A0Bk + iǫakbAaBb) (53)

4. When µ = j > 0 and ν = k > 0, partition the double sum to yield

(a) α = β = 0: Tr [σjσk] = 2δkj

(b) α = 0 and β = b > 0: Tr [σjσkσb] = 2iǫjkb

(c) α = a > 0 and β = 0: Tr [σjσaσk] = 2iǫjak

(d) α = a > 0 and β = b > 0: Tr [σjσaσkσb] = 2 (δjaδkb − δjkδab + δjbδak)

and
{

M⊗̃ (A,B)
}k

j
=

1

4
(AjBk +AkBj + δkjA ·B + iǫjkbA0Bb + iǫjakAaB0) . (54)

Noting that AµBµ = 2A0B0 −A ·B, Equations (51) through (54) can be combined to produce

M⊗̃ (A,B) =
1

4
(A⊗B +B ⊗A− ηA ·B + iA ∧B) . (55)

Here, A∧B is the covariant exterior product of A and B, a 4× 4 antisymmetric matrix (i.e. A∧B = −B ∧A) defined

by

{A ∧B}νµ ≡ ǫµανβA
αBβ , (56)

where ǫαβδγ is the rank 4 permutation pseudotensor, Aα = ηαγAγ and Bβ = ηβγBγ . Finally, as in Equation (28),

define A ⊗̃B = 2M⊗̃ (A,B).

D. COMPARISON WITH CORDES ET AL. (1978)

To distinguish between disjoint and superposed modes, Section III. c) of CRB proposes a statistical test that starts

by describing the linear polarization L = Q + iU at a given pulse longitude as a linear combination of orthogonally
polarized modes, L = L1 +L2 = (|L1| − |L2|) exp(2iψ). It is asserted that intermediate position angles between ψ and

ψ + π/2 do not occur; therefore, without any loss of generality, choose ψ = 0 and define the orthogonally polarized

modes such that the instantaneous Stokes parameters a = 2 [I1, |L1|, 0, 0] and b = 2 [I2,−|L2|, 0, 0]. Note that, because
a2 = a3 = b2 = b3 = 0, the standard deviations ς2 = ς3 = 0 and, referring to Equation (45), this implies that the

Lorentz invariant S2 = 0. That is, the modes defined in Section III. c) of CRB are implicitly assumed to be 100%

polarized. In this case, the mode intensities, I1 = |L1| and I2 = |L2|; however, to facilitate comparison with CRB, I1,
I2, |L1|, and |L2| are treated as distinct random variates until these two equalities are required.

CRB also assume that both modes occur equally frequently such that, when the modes are disjoint, the population

mean Stokes parameters are S = (A + B)/2 = [〈I〉, 〈L〉, 0, 0], where A = 〈a〉 and B = 〈b〉. After substitution of the
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above definitions and n = 1 and F = 0.5 into Equation (39), rearrange and solve for the moments of the instantaneous

Stokes parameters,

〈sµsν〉 = {Cd}νµ + 〈sµ〉〈sν〉=
1

2

(

{CA}νµ + {CB}νµ
)

+
1

4
[(Aµ −Bµ) (Aν −Bν) + (Aµ +Bµ) (Aν +Bν)]

=
1

2
(〈aµaν〉 + 〈bµbν〉) . (57)

The above equation yields 〈L2〉 = 〈s21〉 = 2
(

〈L2
1〉 + 〈L2

2〉
)

and, noting that 〈I1I2〉 = 0 for mutually exclusive modes,

〈I2〉 = 〈s20〉 = 2〈(I1 + I2)
2〉. Therefore, the covariances between the instantaneous Stokes parameters of disjoint

modes described in Section 3.1 are consistent with disjoint modes in Equation (5) of CRB. Furthermore, although not

explicitly noted in CRB, because the modes are implicitly assumed to be 100% polarized, 〈d2L〉 ≡ 〈L2〉/〈I2〉 = 1 in the

case of disjoint modes.
For superposed modes, divide a and b by 2, then substitute n = 1 and S = A+ B into Equation (42) and solve for

the moments,

〈sµsν〉 = {Cs}νµ + 〈sµ〉〈sν〉= {CA}νµ + {CB}νµ +
{

A ⊙̃B
}ν

µ
(58)

= 〈aµaν〉 + 〈bµbν〉 + 2AµBν + 2AνBµ − ηνµA ·B. (59)

Owing to the assumption that the modes are 100% polarized, A ·B = 〈I1〉〈I2〉 + 〈|L1|〉〈|L2|〉 = 2〈|L1|〉〈|L2|〉, and

the above equation yields 〈L2〉 = 〈s21〉 = 〈L2
1〉 + 〈L2

2〉 − 2〈|L1|〉〈|L2|〉. Furthermore, because the mode intensities are
uncorrelated, 〈I1I2〉 = 〈I1〉〈I2〉 and 〈I2〉 = 〈s20〉 = 〈(I1 + I2)

2〉. Therefore, the covariances between the instantaneous

Stokes parameters of superposed modes as described in Section 3.2 are consistent with superposition of modes in

Equation (5) of CRB only if the modes are assumed to be 100% polarized.
To arrive at the above results for disjoint and superposed modes, it is necessary to consider the instantaneous

Stokes parameters; that is, to be consistent with CRB, the Stokes sample size must be unity (n = 1). Under this

assumption, mutually exclusive modes are disjoint by definition. To consider a Stokes sample composed of mutually

exclusive and orthogonally polarized instances, replace the instantaneous Stokes parameters a and b with the sub-
sample mean Stokes parameters Ā′ = 2 [I1, |L1|, 0, 0] and B̄′ = 2 [I2,−|L2|, 0, 0], formed after respectively averaging

over all instances in mode A and all instances in mode B. In this case, the matrix of covariances between the sample

mean Stokes parameters is given by

C̄c = f2C̄′
A + (1 − f)2C̄′

B , (60)

where C̄′
A = CA(fn)−1 and C̄′

B = CB [(1 − f)n]
−1

are the covariances between the sub-sample mean Stokes parame-

ters after averaging over fn instances in mode A and (1 − f)n instances in mode B, respectively. Substitute f = 0.5
into the above equation and rearrange to yield the moments of the composite sample mean Stokes parameters,

〈S̄µS̄ν〉 =
{

C̄c

}ν

µ
+ 〈S̄µ〉〈S̄ν〉=

1

4

(

{

C̄′
A

}ν

µ
+
{

C̄′
B

}ν

µ

)

+
1

4
(Aµ +Bµ) (Aν +Bν)

=
1

4

(

〈Ā′
µĀ

′
ν〉 + 〈B̄′

µB̄
′
ν〉 +AµBν +AνBµ

)

. (61)

The above equation yields 〈L2〉 = 〈S̄2
1〉 = 〈L2

1〉 + 〈L2
2〉 − 2〈|L1|〉〈|L2|〉 and 〈I2〉 = 〈S̄2

0〉 = 〈(I1 + I2)
2〉. Therefore, the

second moments of the composite sample mean Stokes parameters are also consistent with the superposition of modes
in Equation (5) of CRB. That is, given only the second moments of the sample mean total and linearly polarized

intensities, it is not possible to distinguish between superposed modes and Stokes samples that are composed of

mutually exclusive states.

E. VERIFICATION BY SIMULATION

To verify the equations presented in this paper, the following Monte Carlo simulation was repeatedly performed over

a wide range of input parameters and conditions.

1. Generate a sequence of M random electric field vector instances e, each with statistically independent and

identically distributed (iid) circular complex normal components; such a sequence is described by the population

mean Stokes parameters [1,0,0,0].

2. To yield the desired population mean Stokes parameters, Sµ, transform each electric field vector instance by the

Hermitian square root of 2ρ = Sµ σµ.
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3. Optionally perform amplitude modulation by multiplying each instance of e by an iid random variate u that

is drawn from a log-normal distribution. The log-normally distributed variate is generated from a normally

distributed iid variate with zero mean and standard deviation ς and is normalized by the mean of the distribution,

〈u〉 = exp(ς2/2), such that the mean of the amplitude modulating function is unity. To simulate rectangular
subpulses defined by the sub-sample size n, as described in Appendix A, a single value of u is applied to n′

consecutive instances of e.

4. If simulating superposed samples, repeat all of the previous steps to produce M instances of the electric field

vector in the other mode then, for each instance of the electric field vectors from modes A and B, produce M

new instances e = eA + eB .

5. Compute the instantaneous Stokes parameters, sµ = e†σµe.

6. Optionally divide the sequence of M instantaneous Stokes vectors into mutually exclusive Stokes samples of n

instances, yielding a sequence of N = M/n Stokes samples. This step is not optional when simulating composite

samples.

7. If simulating composite samples, replace (1 − f)n instances in each Stokes sample with instantaneous Stokes

vectors in the other mode.

8. If simulating disjoint samples, replace (1−F )N Stokes samples with Stokes samples that contain only instanta-
neous Stokes vectors in the other mode.

9. For each Stokes sample, compute the sample mean Stokes parameters S̄µ.

10. Compute the 4×4 covariances between the Stokes parameters using either the M instantaneous Stokes parameters

or the N sample mean Stokes parameters. Verify that the computed covariance matrix matches the theoretical
prediction within the uncertainty due to noise.

The above simulation is implemented in C++ and is freely available as the epsic open source software package for

simulating the polarization of electromagnetic radiation7.
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APPENDIX

The following additional material was not submitted to The Astrophysical Journal and was not peer reviewed. It is

provided as further information for the interested reader.

F.1. Error in Section 5.2 of Amblard, Gaeta, and Lacoume (1996)

In Statistics for complex variables and signals - Part I: Variables, Amblard, Gaeta, and Lacoume (1996) study the

higher-order statistics of multivariate complex random values using tensor notation. At the bottom of the left-hand

column of page 9, they assert that the fourth-order cumulant C2
2 of the vector Z is related to the fourth-order moment

M2
2 and second-order moment M1

1 as follows

C2
2 = M2

2 − 2M1
1 ⊗M1

1 (62)

In the special case that the vector Z has a complex-valued normal distribution, then the fourth-order cumulant C2
2 is

equal to zero, such that

M2
2 = 2M1

1 ⊗M1
1 (63)

Now, if the components of Z are uncorrelated and have unit variance, then the second moment M1
1 is the identity

matrix; i.e.
{

M1
1

}j

i
= δji

where δji is the Kronecker delta. Using index notation, the fourth moment is defined as

{

M2
2

}im

jn
= 〈ZiZmZ

∗
jZ

∗
n〉 (64)
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However, Equation (63) above says
{

M2
2

}im

jn
= 2M1

1 ⊗M1
1
im

jn = 2δijδ
m
n , (65)

which breaks down when m = j = a and n = i = b and a 6= b, such that

{

M2
2

}ab

ba
= 〈ZaZbZ

∗
bZ

∗
a〉 = 〈|Za|2|Zb|2〉 (66)

where ww∗ = |w|2 and a and b are constants; i.e. no summation over indeces is implied. Now |Za|2 ≥ 0 and |Zb|2 ≥ 0;

therefore, the expectation of their product is greater than zero. However, Equation (63) dictates that this fourth

moment must be zero; i.e.
{

M2
2

}ab

ba
= 2δab δ

b
a = 0

F.2. Double contraction of Cardoso (1991)

In Super-symmetric decomposition of the fourth-order cumulant tensor. Blind identification of more sources than sen-

sors., Cardoso (1991) studies the higher-order statistics of multivariate complex random values using tensor notation.

Equation (6) of Cardoso (1991) defines two tensor products in terms of their transformation properties. The left hand
sides of these equations include a double contraction, the definition of which can be inferred from the coordinates of

the tensors provided in the text that follows, namely

{A⊗1 B}ijkl≡aijb∗kl (67)

{A⊗2 B}ijkl≡aikb∗jl. (68)

To arrive at the above equations, the double contraction must be defined as

{UM}ij ≡ uijklmkl. (69)

Note that, in the above equation, no distinction is made between covariant and contravariant indeces; that is, con-

tractions are performed over pairs of similar indeces. To show that the above definition is necessary, start with the

definitions of the outer products,

(A⊗1 B)M ≡ATr
[

MBH
]

(70)

(A⊗2 B)M ≡AMBH. (71)

In index notation, the left hand side of Equation (70) is

{(A⊗1 B)M}ij ≡ {A⊗1 B}ijklmkl = aijb
∗
klmkl (72)

and the right hand side is
{

ATr
[

MBH
]}

ij
= aij

{

MBH
}

kk
= aijb

∗
klmkl (73)

Similarly, the left hand side of Equation (71) is

{(A⊗2 B)M}ij ≡ {A⊗2 B}ijklmkl = aikb
∗
jlmkl (74)

and the right hand side is
{

AMBH
}

ij
= aik

{

MBH
}

kj
= aikb

∗
jlmkl (75)

F.3. Equations (15) and (16) are consistent with Equations (24) and (25), respectively

Substitute the left hand side of Equation (24) into the left hand side of Equation (21) and expand the right hand side

of Equation (21) using the right hand side of Equation (15) to arrive at

{(A⊗B) :ρ}ji = Aj
iB

l
kρ

k
l . (76)

Now expand the right hand side of Equation (24) using index notation to arrive at the same result

{ATr [ρB]}ji = Aj
i {ρB}ll = Aj

iB
l
kρ

k
l (77)
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Similarly, substitute the left hand side of Equation (25) into the left hand side of Equation (21) and expand the

right hand side of Equation (21) using the right hand side of Equation (16) to arrive at
{(

A ⊗̃B
)

:ρ
}j

i
= Al

iB
j
kρ

k
l . (78)

Now expand the right hand side of Equation (25) using index notation to arrive at the same result

{AρB}ji = Al
i {ρB}jl = Al

iB
j
kρ

k
l (79)

F.4. Verification of Equation (23)

Equation (23) can be verified by substituting it into the right hand side of Equation (22), yielding

RHS =
1

2
σµ :

(

1

2
Mλ

κσκ ⊗ σλ

)

:σν =
1

4
Mλ

κσµ : (σκ ⊗ σλ) :σν

The above expression can be reorganized using Equation (24) to yield

RHS =
1

4
Mλ

κ (σµ :σκ) (σλ :σν) .

Then, use
σµ :σν = Tr [σµσν ] = 2δµν .

to arrive at the left hand side of Equation (22) - done!

RHS = Mλ
κ δµκδνλ = Mν

µ = LHS.

F.5. Derivation of Equation (32)

Starting with U = κ2;2(e), substitute Equation (13) into Equation (22), multiply by two, and apply Equations (26)
and (27) to arrive at

Qν
µ = 2Mν

µ = σµ:κ2;2(e):σν

=σµ:
(

〈r ⊗ r〉 − ρ⊗ ρ− ρ ⊗̃ρ
)

:σν

= 〈2 {M⊗ (r, r)}νµ〉 − 2 {M⊗ (ρ,ρ)}νµ − 2
{

M⊗̃ (ρ,ρ)
}ν

µ
. (80)

Then apply Equations (28) and (30) to express the above equation in terms of the instantaneous and population mean
Stokes parameters, s and S, associated with r and ρ, respectively,

Q = 〈s⊗ sT 〉 − S ⊗ ST − S ⊗̃S = C− S ⊗̃S (81)

where the last equality follows from Equation (33) and the definition of C following Equation (32).

F.6. Noise bias is consistent with Equation (9) of Cordes & Hankins (1977)

Assuming that the noise is normally distributed and unpolarized, the last two terms of Equation (47) are

B = CN + SS ⊙̃SN = SN ⊗̃SN + SS ⊙̃SN (82)

and the biases to the variances of the Stokes parameters are given by

bµ = Bµµ = SN,µ (SN,µ + 2SS,µ) − 1

2
ηµµSN,0 (SN,0 + 2SS,0) (83)

Noting that SN,j = 0 for j > 0, the biases to the variances of all four Stokes parameters are equal to

bµ =
1

2
SN,0 (SN,0 + 2SS,0)

When comparing the above bias estimate with Equation (9) of Cordes & Hankins (1977), note that SS,0 = 〈Iron〉+〈Ilon〉
and, for unpolarized system and sky noise, 〈Iroff

〉 = 〈Iloff
〉 = SN,0/2. The biases to the total intensity and circular

polarization are then

CI = CV =
1

4
SN,0 [(SN,0 + 4〈Iron〉) + (SN,0 + 4〈Ilon〉)] =

1

2
SN,0 (SN,0 + 2SS,0) .
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F.7. Derivation of Equation (48)

Let the modulated instantaneous Stokes parameters s′ = us and the covariances between them

C′ = 〈s′ ⊗ s′〉 − 〈s′〉 ⊗ 〈s′〉 (84)

= 〈u2〉〈s⊗ s〉 − 〈u〉2〈s〉 ⊗ 〈s〉 (85)

where the latter equality arises because s and u are statistically independent (e.g. therefore, 〈us〉 = 〈u〉〈s〉). Now let

u = 〈u〉 + δu and s = 〈s〉 + δs, which yields

C′ =
(

〈u〉2 + 〈δu2〉
)

(〈s〉 ⊗ 〈s〉 + 〈δs⊗ δs〉) − 〈u〉2〈s〉 ⊗ 〈s〉 (86)

= 〈u〉2C + ς2u〈s〉 ⊗ 〈s〉 + ς2uC (87)

=
(

ς2u + 1
)

C + ς2uS ⊗ S (88)

where the first equality uses 〈δu〉 = 0 and 〈δs〉 = 0; the second equality uses 〈δu2〉 = ς2u and 〈δs ⊗ δs〉 = C; and the
last equality follows from 〈u〉 = 1 and 〈s〉 = S.

F.8. Derivation of Equation (49)

After integration over n′ instances of the instantaneous Stokes parameters, the sub-sample mean total intensity S̄′
0

has a population mean S0 ≡ 〈S̄′
0〉 = 1 and variance ς̄ ′20 = (2n′)−1. Each instance of the sub-sample mean is multiplied

by a statistically independent and lognormally distributed variate u with population mean 〈u〉 =
√
ξ and variance

ς2u = ξ2 − ξ, where ξ = exp(ς2) and ς is the standard deviation of the normally distributed variate v used to generate

u = exp(v).

The amplitude-modulated sub-sample mean total intensity S̄′′
0 ≡ uS̄′

0 has population mean 〈S̄′′
0 〉 = 〈u〉, variance

(Goodman 1960)

ς̄ ′′20 = S2
0ς

2
u + 〈u〉2ς̄ ′20 + ς2u ς̄

′2
0 = ς2u

(

1 +
1

2n′

)

+ 〈u〉2 1

2n′
, (89)

and squared modulation index

β′′2 ≡ ς̄ ′′20

〈S̄′′
0 〉2

=
ς2u
〈u〉2

(

1 +
1

2n′

)

+
1

2n′
. (90)

After integrating over N ′ = n/n′ statistically independent instances of S̄′′
0 , the square of the modulation index of the

sample mean Stokes parameters S̄ is given by

β2 =
β′′2

N
=

1

n

[

(ξ − 1)

(

n′ +
1

2

)

+
1

2

]

. (91)

F.9. Verification of Equation (56)

To show that equation (56) is consistent with equations (51) through (54), note that the diagonal values of an

anti-symmetric matrix must be zero; therefore, there is no need to further consider equation (51). Also, for i, j, k > 0

and α, β, γ ≥ 0,
∑

α,β,γ

ǫ0αβγ =
∑

i,j,k

ǫ0ijk =
∑

i,j,k

ǫijk.

Therefore, for equation (52), where µ = j > 0 and ν = 0,

{A ∧B}0j ≡ ǫjα0βA
αBβ = ǫja0bA

aBb = ǫ0jabA
aBb = ǫjabAaBb. (92)

Similarly, for equation (53), where µ = 0 and ν = k > 0,

{A ∧B}k0 ≡ ǫ0αkβA
αBβ = ǫ0akbA

aBb = ǫakbA
aBb = ǫakbAaBb. (93)

Finally, for equation (54), where µ = j > 0 and ν = k > 0,

{A ∧B}kj ≡ ǫjαkβA
αBβ = ǫj0kbA

0Bb + ǫjak0A
aB0 = −ǫ0jkbA0Bb − ǫ0jakA

aB0 = ǫjkbA0Bb + ǫjakAaB0. (94)


